segmentation.rst 16 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
Semantic Segmentation
=====================
Zhang's avatar
v0.4.2  
Zhang committed
3
4
5
6
7
8

Install Package
---------------

- Clone the GitHub repo::
    
Hang Zhang's avatar
Hang Zhang committed
9
    git clone https://github.com/zhanghang1989/PyTorch-Encoding
Zhang's avatar
v0.4.2  
Zhang committed
10
11
12

- Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_.

Hang Zhang's avatar
Hang Zhang committed
13
14
Get Pre-trained Model
---------------------
Zhang's avatar
v0.4.2  
Zhang committed
15
16

.. hint::
Hang Zhang's avatar
Hang Zhang committed
17
18
    The model names contain the training information. For instance ``EncNet_ResNet50s_ADE``:
      - ``EncNet`` indicate the algorithm is Context Encoding for Semantic Segmentation
Zhang's avatar
v0.4.2  
Zhang committed
19
      - ``ResNet50`` is the name of backbone network.
Hang Zhang's avatar
Hang Zhang committed
20
      - ``ADE`` means the ADE20K dataset.
Zhang's avatar
v0.4.2  
Zhang committed
21

Hang Zhang's avatar
Hang Zhang committed
22
    How to get pretrained model, for example ``EncNet_ResNet50s_ADE``::
Zhang's avatar
v0.4.2  
Zhang committed
23

Hang Zhang's avatar
Hang Zhang committed
24
        model = encoding.models.get_model('EncNet_ResNet50s_ADE', pretrained=True)
Zhang's avatar
v0.4.2  
Zhang committed
25

Hang Zhang's avatar
Hang Zhang committed
26
    After clicking ``cmd`` in the table, the command for training the model can be found below the table.
Zhang's avatar
v0.4.2  
Zhang committed
27
28
29
30

.. role:: raw-html(raw)
   :format: html

Hang Zhang's avatar
Hang Zhang committed
31

Hang Zhang's avatar
Hang Zhang committed
32
33
ResNeSt Backbone Models
-----------------------
Hang Zhang's avatar
Hang Zhang committed
34

35
36
37
38
39
40
41
42
43
44
45
46
ADE20K Dataset
~~~~~~~~~~~~~~

==============================================================================  ====================    ===================    =========================================================================================================
Model                                                                           pixAcc                  mIoU                   Command                                                                                      
==============================================================================  ====================    ===================    =========================================================================================================
FCN_ResNeSt50_ADE                                                               80.18%                  42.94%                 :raw-html:`<a href="javascript:toggleblock('cmd_fcn_nest50_ade')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt50_ADE                                                           81.17%                  45.12%                 :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest50_ade')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt101_ADE                                                          82.07%                  46.91%                 :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest101_ade')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt200_ADE                                                          82.45%                  48.36%                 :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest200_ade')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt269_ADE                                                          82.62%                  47.60%                 :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest269_ade')" class="toggleblock">cmd</a>`
==============================================================================  ====================    ===================    =========================================================================================================
Zhang's avatar
v0.4.2  
Zhang committed
47
48
49

.. raw:: html

Hang Zhang's avatar
Hang Zhang committed
50
    <code xml:space="preserve" id="cmd_fcn_nest50_ade" style="display: none; text-align: left; white-space: pre-wrap">
51
    python train.py --dataset ADE20K --model fcn  --aux --backbone resnest50
52
53
54
    </code>

    <code xml:space="preserve" id="cmd_enc_nest50_ade" style="display: none; text-align: left; white-space: pre-wrap">
55
    python train.py --dataset ADE20K --model EncNet --aux --se-loss --backbone resnest50
Zhang's avatar
v0.4.2  
Zhang committed
56
57
    </code>

Hang Zhang's avatar
Hang Zhang committed
58
    <code xml:space="preserve" id="cmd_deeplab_resnest50_ade" style="display: none; text-align: left; white-space: pre-wrap">
59
    python train.py --dataset ADE20K --model deeplab --aux --backbone resnest50
Zhang's avatar
v0.4.2  
Zhang committed
60
61
    </code>

Hang Zhang's avatar
Hang Zhang committed
62
    <code xml:space="preserve" id="cmd_deeplab_resnest101_ade" style="display: none; text-align: left; white-space: pre-wrap">
63
    python train.py --dataset ADE20K --model deeplab --aux --backbone resnest101 --epochs 180
64
65
66
67
    </code>

    <code xml:space="preserve" id="cmd_deeplab_resnest200_ade" style="display: none; text-align: left; white-space: pre-wrap">
    python train.py --dataset ADE20K --model deeplab --aux --backbone resnest200 --epochs 180
68
69
70
    </code>

    <code xml:space="preserve" id="cmd_deeplab_resnest269_ade" style="display: none; text-align: left; white-space: pre-wrap">
71
    python train.py --dataset ADE20K --model deeplab --aux --backbone resnest269
Hang Zhang's avatar
Hang Zhang committed
72
73
74
    </code>


75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Pascal Context Dataset
~~~~~~~~~~~~~~~~~~~~~~

==============================================================================  ====================    ====================    =========================================================================================================
Model                                                                           pixAcc                  mIoU                    Command                                                                                      
==============================================================================  ====================    ====================    =========================================================================================================
DeepLab_ResNeSt101_PContext                                                     81.91%                  56.49%                  :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_nest101_pcont')" class="toggleblock">cmd</a>`
DeepLab_ResNeSt200_PContext                                                     82.50%                  58.37%                  :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_nest200_pcont')" class="toggleblock">cmd</a>`
==============================================================================  ====================    ====================    =========================================================================================================

.. raw:: html

    <code xml:space="preserve" id="cmd_deeplab_nest101_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    python train.py --dataset pcontext --model deeplab --aux --backbone resnest101
    </code>

    <code xml:space="preserve" id="cmd_deeplab_nest200_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    python train.py --dataset pcontext --model deeplab --aux --backbone resnest200
    </code>



Hang Zhang's avatar
Hang Zhang committed
97
98
99
100
101
102
ResNet Backbone Models
----------------------

ADE20K Dataset
~~~~~~~~~~~~~~

103
104
105
106
107
108
109
==============================================================================  ====================    ====================    =============================================================================================
Model                                                                           pixAcc                  mIoU                    Command                                                                                      
==============================================================================  ====================    ====================    =============================================================================================
FCN_ResNet50s_ADE                                                               78.7%                   38.5%                   :raw-html:`<a href="javascript:toggleblock('cmd_fcn50_ade')" class="toggleblock">cmd</a>`
EncNet_ResNet50s_ADE                                                            80.1%                   41.5%                   :raw-html:`<a href="javascript:toggleblock('cmd_enc50_ade')" class="toggleblock">cmd</a>`    
EncNet_ResNet101s_ADE                                                           81.3%                   44.4%                   :raw-html:`<a href="javascript:toggleblock('cmd_enc101_ade')" class="toggleblock">cmd</a>`   
==============================================================================  ====================    ====================    =============================================================================================
Hang Zhang's avatar
Hang Zhang committed
110
111
112
113
114


.. raw:: html

    <code xml:space="preserve" id="cmd_fcn50_ade" style="display: none; text-align: left; white-space: pre-wrap">
115
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model FCN
Hang Zhang's avatar
Hang Zhang committed
116
117
    </code>

Hang Zhang's avatar
Hang Zhang committed
118
    <code xml:space="preserve" id="cmd_psp50_ade" style="display: none; text-align: left; white-space: pre-wrap">
119
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model PSP --aux
Hang Zhang's avatar
Hang Zhang committed
120
121
122
    </code>

    <code xml:space="preserve" id="cmd_enc50_ade" style="display: none; text-align: left; white-space: pre-wrap">
123
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model EncNet --aux --se-loss
Hang Zhang's avatar
Hang Zhang committed
124
125
    </code>

Hang Zhang's avatar
Hang Zhang committed
126
    <code xml:space="preserve" id="cmd_enc101_ade" style="display: none; text-align: left; white-space: pre-wrap">
127
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model EncNet --aux --se-loss --backbone resnet101
Hang Zhang's avatar
Hang Zhang committed
128
129
    </code>

Hang Zhang's avatar
Hang Zhang committed
130
131
132
Pascal Context Dataset
~~~~~~~~~~~~~~~~~~~~~~

133
134
135
136
137
138
==============================================================================  =====================    =====================    =============================================================================================
Model                                                                           pixAcc                   mIoU                     Command                                                                                      
==============================================================================  =====================    =====================    =============================================================================================
Encnet_ResNet50s_PContext                                                        79.2%                    51.0%                    :raw-html:`<a href="javascript:toggleblock('cmd_enc50_pcont')" class="toggleblock">cmd</a>`  
EncNet_ResNet101s_PContext                                                       80.7%                    54.1%                    :raw-html:`<a href="javascript:toggleblock('cmd_enc101_pcont')" class="toggleblock">cmd</a>` 
==============================================================================  =====================    =====================    =============================================================================================
Hang Zhang's avatar
Hang Zhang committed
139
140
141
142

.. raw:: html

    <code xml:space="preserve" id="cmd_fcn50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
143
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model FCN
Hang Zhang's avatar
Hang Zhang committed
144
145
146
    </code>

    <code xml:space="preserve" id="cmd_enc50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
147
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model EncNet --aux --se-loss
Hang Zhang's avatar
Hang Zhang committed
148
149
150
    </code>

    <code xml:space="preserve" id="cmd_enc101_pcont" style="display: none; text-align: left; white-space: pre-wrap">
151
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model EncNet --aux --se-loss --backbone resnet101
Hang Zhang's avatar
Hang Zhang committed
152
153
154
    </code>


Hang Zhang's avatar
Hang Zhang committed
155
156
157
Pascal VOC Dataset
~~~~~~~~~~~~~~~~~~

158
159
160
161
162
==============================================================================  ======================    =====================    =============================================================================================
Model                                                                           pixAcc                    mIoU                     Command                                                                                      
==============================================================================  ======================    =====================    =============================================================================================
EncNet_ResNet101s_VOC                                                           N/A                       85.9%                    :raw-html:`<a href="javascript:toggleblock('cmd_enc101_voc')" class="toggleblock">cmd</a>`   
==============================================================================  ======================    =====================    =============================================================================================
Hang Zhang's avatar
Hang Zhang committed
163
164
165
166
167
168

.. raw:: html

    <code xml:space="preserve" id="cmd_enc101_voc" style="display: none; text-align: left; white-space: pre-wrap">
    # First finetuning COCO dataset pretrained model on augmented set
    # You can also train from scratch on COCO by yourself
169
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset Pascal_aug --model-zoo EncNet_Resnet101_COCO --aux --se-loss --lr 0.001 --syncbn --ngpus 4 --checkname res101 --ft
Hang Zhang's avatar
Hang Zhang committed
170
    # Finetuning on original set
171
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset Pascal_voc --model encnet --aux  --se-loss --backbone resnet101 --lr 0.0001 --syncbn --ngpus 4 --checkname res101 --resume runs/Pascal_aug/encnet/res101/checkpoint.params --ft
Hang Zhang's avatar
Hang Zhang committed
172
173
174
    </code>


Hang Zhang's avatar
Hang Zhang committed
175
176
177
178
179
Test Pretrained
~~~~~~~~~~~~~~~

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``PASCAL Context`` dataset::

Hang Zhang's avatar
Hang Zhang committed
180
      python scripts/prepare_ade20k.py
Hang Zhang's avatar
Hang Zhang committed
181
182
  
- The test script is in the ``experiments/segmentation/`` folder. For evaluating the model (using MS),
Hang Zhang's avatar
Hang Zhang committed
183
  for example ``EncNet_ResNet50s_ADE``::
Hang Zhang's avatar
Hang Zhang committed
184

Hang Zhang's avatar
Hang Zhang committed
185
186
      python test.py --dataset ADE20K --model-zoo EncNet_ResNet50s_ADE --eval
      # pixAcc: 0.801, mIoU: 0.415: 100%|████████████████████████| 250/250
Hang Zhang's avatar
Hang Zhang committed
187

188
189
190
191
192
193
194
195
196
197

Train Your Own Model
--------------------

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``ADE20K`` dataset::

    python scripts/prepare_ade20k.py

- The training script is in the ``experiments/segmentation/`` folder, example training command::

198
    python train.py --dataset ade20k --model encnet --aux --se-loss
199

200
- Detail training options, please run ``python train.py -h``. Commands for reproducing pre-trained models can be found in the table.
201
202
203
204
205
206
207
208
209

.. hint::
    The validation metrics during the training only using center-crop is just for monitoring the
    training correctness purpose. For evaluating the pretrained model on validation set using MS,
    please use the command::

        python test.py --dataset pcontext --model encnet --aux --se-loss --resume mycheckpoint --eval


Zhang's avatar
v0.4.2  
Zhang committed
210
211
212
213
214
215
216
217
218
Quick Demo
~~~~~~~~~~

.. code-block:: python

    import torch
    import encoding

    # Get the model
219
    model = encoding.models.get_model('Encnet_ResNet50s_PContext', pretrained=True).cuda()
Zhang's avatar
v0.4.2  
Zhang committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    model.eval()

    # Prepare the image
    url = 'https://github.com/zhanghang1989/image-data/blob/master/' + \
          'encoding/segmentation/pcontext/2010_001829_org.jpg?raw=true'
    filename = 'example.jpg'
    img = encoding.utils.load_image(
        encoding.utils.download(url, filename)).cuda().unsqueeze(0)

    # Make prediction
    output = model.evaluate(img)
    predict = torch.max(output, 1)[1].cpu().numpy() + 1

    # Get color pallete for visualization
    mask = encoding.utils.get_mask_pallete(predict, 'pcontext')
    mask.save('output.png')


.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829_org.jpg
   :width: 45%

.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829.png
   :width: 45%

Hang Zhang's avatar
Hang Zhang committed
244

Zhang's avatar
v0.4.2  
Zhang committed
245
246
247
248
Citation
--------

.. note::
249
250
251
252
253
254
255
256
257
258
    * Hang Zhang et al. "ResNeSt: Split-Attention Networks" *arXiv 2020*::

        @article{zhang2020resnest,
        title={ResNeSt: Split-Attention Networks},
        author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
        journal={arXiv preprint arXiv:2004.08955},
        year={2020}
        }


Zhang's avatar
v0.4.2  
Zhang committed
259
260
261
262
263
264
265
266
267
    * Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation"  *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*::

        @InProceedings{Zhang_2018_CVPR,
        author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
        title = {Context Encoding for Semantic Segmentation},
        booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2018}
        }