segmentation.rst 13.5 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
Semantic Segmentation
=====================
Zhang's avatar
v0.4.2  
Zhang committed
3
4
5
6
7
8

Install Package
---------------

- Clone the GitHub repo::
    
Hang Zhang's avatar
Hang Zhang committed
9
    git clone https://github.com/zhanghang1989/PyTorch-Encoding
Zhang's avatar
v0.4.2  
Zhang committed
10
11
12

- Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_.

Hang Zhang's avatar
Hang Zhang committed
13
14
Get Pre-trained Model
---------------------
Zhang's avatar
v0.4.2  
Zhang committed
15
16

.. hint::
Hang Zhang's avatar
Hang Zhang committed
17
18
    The model names contain the training information. For instance ``EncNet_ResNet50s_ADE``:
      - ``EncNet`` indicate the algorithm is Context Encoding for Semantic Segmentation
Zhang's avatar
v0.4.2  
Zhang committed
19
      - ``ResNet50`` is the name of backbone network.
Hang Zhang's avatar
Hang Zhang committed
20
      - ``ADE`` means the ADE20K dataset.
Zhang's avatar
v0.4.2  
Zhang committed
21

Hang Zhang's avatar
Hang Zhang committed
22
    How to get pretrained model, for example ``EncNet_ResNet50s_ADE``::
Zhang's avatar
v0.4.2  
Zhang committed
23

Hang Zhang's avatar
Hang Zhang committed
24
        model = encoding.models.get_model('EncNet_ResNet50s_ADE', pretrained=True)
Zhang's avatar
v0.4.2  
Zhang committed
25

Hang Zhang's avatar
Hang Zhang committed
26
    After clicking ``cmd`` in the table, the command for training the model can be found below the table.
Zhang's avatar
v0.4.2  
Zhang committed
27
28
29
30

.. role:: raw-html(raw)
   :format: html

Hang Zhang's avatar
Hang Zhang committed
31

Hang Zhang's avatar
Hang Zhang committed
32
33
ResNeSt Backbone Models
-----------------------
Hang Zhang's avatar
Hang Zhang committed
34

Hang Zhang's avatar
Hang Zhang committed
35
==============================================================================  ==============    ==============    =========================================================================================================
Hang Zhang's avatar
Hang Zhang committed
36
Model                                                                           pixAcc            mIoU              Command                                                                                      
Hang Zhang's avatar
Hang Zhang committed
37
==============================================================================  ==============    ==============    =========================================================================================================
38
FCN_ResNeSt50_ADE                                                               80.18%            42.94%            :raw-html:`<a href="javascript:toggleblock('cmd_fcn_nest50_ade')" class="toggleblock">cmd</a>`
Hang Zhang's avatar
Hang Zhang committed
39
40
DeepLabV3_ResNeSt50_ADE                                                         81.17%            45.12%            :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest50_ade')" class="toggleblock">cmd</a>`
DeepLabV3_ResNeSt101_ADE                                                        82.07%            46.91%            :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest101_ade')" class="toggleblock">cmd</a>`
41
DeepLabV3_ResNeSt269_ADE                                                        82.62%            47.60%            :raw-html:`<a href="javascript:toggleblock('cmd_deeplab_resnest269_ade')" class="toggleblock">cmd</a>`
Hang Zhang's avatar
Hang Zhang committed
42
==============================================================================  ==============    ==============    =========================================================================================================
Zhang's avatar
v0.4.2  
Zhang committed
43
44
45

.. raw:: html

Hang Zhang's avatar
Hang Zhang committed
46
    <code xml:space="preserve" id="cmd_fcn_nest50_ade" style="display: none; text-align: left; white-space: pre-wrap">
47
48
49
50
51
    python train_dist.py --dataset ADE20K --model fcn  --aux --backbone resnest50
    </code>

    <code xml:space="preserve" id="cmd_enc_nest50_ade" style="display: none; text-align: left; white-space: pre-wrap">
    python train_dist.py --dataset ADE20K --model EncNet --aux --se-loss --backbone resnest50
Zhang's avatar
v0.4.2  
Zhang committed
52
53
    </code>

Hang Zhang's avatar
Hang Zhang committed
54
    <code xml:space="preserve" id="cmd_deeplab_resnest50_ade" style="display: none; text-align: left; white-space: pre-wrap">
55
    python train_dist.py --dataset ADE20K --model deeplab --aux --backbone resnest50
Zhang's avatar
v0.4.2  
Zhang committed
56
57
    </code>

Hang Zhang's avatar
Hang Zhang committed
58
    <code xml:space="preserve" id="cmd_deeplab_resnest101_ade" style="display: none; text-align: left; white-space: pre-wrap">
59
60
61
62
63
    python train_dist.py --dataset ADE20K --model deeplab --aux --backbone resnest101
    </code>

    <code xml:space="preserve" id="cmd_deeplab_resnest269_ade" style="display: none; text-align: left; white-space: pre-wrap">
    python train_dist.py --dataset ADE20K --model deeplab --aux --backbone resnest269
Hang Zhang's avatar
Hang Zhang committed
64
65
66
67
68
69
70
71
72
73
74
75
    </code>


ResNet Backbone Models
----------------------

ADE20K Dataset
~~~~~~~~~~~~~~

==============================================================================  =================    ==============    =============================================================================================
Model                                                                           pixAcc               mIoU              Command                                                                                      
==============================================================================  =================    ==============    =============================================================================================
Hang Zhang's avatar
Hang Zhang committed
76
77
78
FCN_ResNet50s_ADE                                                               78.7%                38.5%             :raw-html:`<a href="javascript:toggleblock('cmd_fcn50_ade')" class="toggleblock">cmd</a>`
EncNet_ResNet50s_ADE                                                            80.1%                41.5%             :raw-html:`<a href="javascript:toggleblock('cmd_enc50_ade')" class="toggleblock">cmd</a>`    
EncNet_ResNet101s_ADE                                                           81.3%                44.4%             :raw-html:`<a href="javascript:toggleblock('cmd_enc101_ade')" class="toggleblock">cmd</a>`   
Hang Zhang's avatar
Hang Zhang committed
79
80
81
82
83
84
==============================================================================  =================    ==============    =============================================================================================


.. raw:: html

    <code xml:space="preserve" id="cmd_fcn50_ade" style="display: none; text-align: left; white-space: pre-wrap">
85
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset ADE20K --model FCN
Hang Zhang's avatar
Hang Zhang committed
86
87
    </code>

Hang Zhang's avatar
Hang Zhang committed
88
    <code xml:space="preserve" id="cmd_psp50_ade" style="display: none; text-align: left; white-space: pre-wrap">
89
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset ADE20K --model PSP --aux
Hang Zhang's avatar
Hang Zhang committed
90
91
92
    </code>

    <code xml:space="preserve" id="cmd_enc50_ade" style="display: none; text-align: left; white-space: pre-wrap">
93
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset ADE20K --model EncNet --aux --se-loss
Hang Zhang's avatar
Hang Zhang committed
94
95
    </code>

Hang Zhang's avatar
Hang Zhang committed
96
    <code xml:space="preserve" id="cmd_enc101_ade" style="display: none; text-align: left; white-space: pre-wrap">
97
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset ADE20K --model EncNet --aux --se-loss --backbone resnet101
Hang Zhang's avatar
Hang Zhang committed
98
99
    </code>

Hang Zhang's avatar
Hang Zhang committed
100
101
102
103
104
105
Pascal Context Dataset
~~~~~~~~~~~~~~~~~~~~~~

==============================================================================  =================    ==============    =============================================================================================
Model                                                                           pixAcc               mIoU              Command                                                                                      
==============================================================================  =================    ==============    =============================================================================================
106
107
Encnet_ResNet50s_PContext                                                        79.2%                51.0%             :raw-html:`<a href="javascript:toggleblock('cmd_enc50_pcont')" class="toggleblock">cmd</a>`  
EncNet_ResNet101s_PContext                                                       80.7%                54.1%             :raw-html:`<a href="javascript:toggleblock('cmd_enc101_pcont')" class="toggleblock">cmd</a>` 
Hang Zhang's avatar
Hang Zhang committed
108
109
110
111
112
==============================================================================  =================    ==============    =============================================================================================

.. raw:: html

    <code xml:space="preserve" id="cmd_fcn50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
113
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset PContext --model FCN
Hang Zhang's avatar
Hang Zhang committed
114
115
116
    </code>

    <code xml:space="preserve" id="cmd_enc50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
117
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset PContext --model EncNet --aux --se-loss
Hang Zhang's avatar
Hang Zhang committed
118
119
120
    </code>

    <code xml:space="preserve" id="cmd_enc101_pcont" style="display: none; text-align: left; white-space: pre-wrap">
121
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset PContext --model EncNet --aux --se-loss --backbone resnet101
Hang Zhang's avatar
Hang Zhang committed
122
123
124
    </code>


Hang Zhang's avatar
Hang Zhang committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Pascal VOC Dataset
~~~~~~~~~~~~~~~~~~

==============================================================================  =================    ==============    =============================================================================================
Model                                                                           pixAcc               mIoU              Command                                                                                      
==============================================================================  =================    ==============    =============================================================================================
EncNet_ResNet101s_VOC                                                           N/A                  85.9%             :raw-html:`<a href="javascript:toggleblock('cmd_enc101_voc')" class="toggleblock">cmd</a>`   
==============================================================================  =================    ==============    =============================================================================================

.. raw:: html

    <code xml:space="preserve" id="cmd_enc101_voc" style="display: none; text-align: left; white-space: pre-wrap">
    # First finetuning COCO dataset pretrained model on augmented set
    # You can also train from scratch on COCO by yourself
139
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset Pascal_aug --model-zoo EncNet_Resnet101_COCO --aux --se-loss --lr 0.001 --syncbn --ngpus 4 --checkname res101 --ft
Hang Zhang's avatar
Hang Zhang committed
140
    # Finetuning on original set
141
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train_dist.py --dataset Pascal_voc --model encnet --aux  --se-loss --backbone resnet101 --lr 0.0001 --syncbn --ngpus 4 --checkname res101 --resume runs/Pascal_aug/encnet/res101/checkpoint.params --ft
Hang Zhang's avatar
Hang Zhang committed
142
143
144
    </code>


Hang Zhang's avatar
Hang Zhang committed
145
146
147
148
149
Test Pretrained
~~~~~~~~~~~~~~~

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``PASCAL Context`` dataset::

Hang Zhang's avatar
Hang Zhang committed
150
      python scripts/prepare_ade20k.py
Hang Zhang's avatar
Hang Zhang committed
151
152
  
- The test script is in the ``experiments/segmentation/`` folder. For evaluating the model (using MS),
Hang Zhang's avatar
Hang Zhang committed
153
  for example ``EncNet_ResNet50s_ADE``::
Hang Zhang's avatar
Hang Zhang committed
154

Hang Zhang's avatar
Hang Zhang committed
155
156
      python test.py --dataset ADE20K --model-zoo EncNet_ResNet50s_ADE --eval
      # pixAcc: 0.801, mIoU: 0.415: 100%|████████████████████████| 250/250
Hang Zhang's avatar
Hang Zhang committed
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

Train Your Own Model
--------------------

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``ADE20K`` dataset::

    python scripts/prepare_ade20k.py

- The training script is in the ``experiments/segmentation/`` folder, example training command::

    python train_dist.py --dataset ade20k --model encnet --aux --se-loss

- Detail training options, please run ``python train_dist.py -h``. Commands for reproducing pre-trained models can be found in the table.

.. hint::
    The validation metrics during the training only using center-crop is just for monitoring the
    training correctness purpose. For evaluating the pretrained model on validation set using MS,
    please use the command::

        python test.py --dataset pcontext --model encnet --aux --se-loss --resume mycheckpoint --eval


Zhang's avatar
v0.4.2  
Zhang committed
180
181
182
183
184
185
186
187
188
Quick Demo
~~~~~~~~~~

.. code-block:: python

    import torch
    import encoding

    # Get the model
189
    model = encoding.models.get_model('Encnet_ResNet50s_PContext', pretrained=True).cuda()
Zhang's avatar
v0.4.2  
Zhang committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    model.eval()

    # Prepare the image
    url = 'https://github.com/zhanghang1989/image-data/blob/master/' + \
          'encoding/segmentation/pcontext/2010_001829_org.jpg?raw=true'
    filename = 'example.jpg'
    img = encoding.utils.load_image(
        encoding.utils.download(url, filename)).cuda().unsqueeze(0)

    # Make prediction
    output = model.evaluate(img)
    predict = torch.max(output, 1)[1].cpu().numpy() + 1

    # Get color pallete for visualization
    mask = encoding.utils.get_mask_pallete(predict, 'pcontext')
    mask.save('output.png')


.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829_org.jpg
   :width: 45%

.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829.png
   :width: 45%

Hang Zhang's avatar
Hang Zhang committed
214

Zhang's avatar
v0.4.2  
Zhang committed
215
216
217
218
Citation
--------

.. note::
219
220
221
222
223
224
225
226
227
228
    * Hang Zhang et al. "ResNeSt: Split-Attention Networks" *arXiv 2020*::

        @article{zhang2020resnest,
        title={ResNeSt: Split-Attention Networks},
        author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
        journal={arXiv preprint arXiv:2004.08955},
        year={2020}
        }


Zhang's avatar
v0.4.2  
Zhang committed
229
230
231
232
233
234
235
236
237
    * Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation"  *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*::

        @InProceedings{Zhang_2018_CVPR,
        author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
        title = {Context Encoding for Semantic Segmentation},
        booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2018}
        }