encoding.py 5.43 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable
from .._ext import encoding_lib

Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
18
__all__ = ['aggregate', 'scaledL2']
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
19
20

class _aggregate(Function):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
21
    @staticmethod
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
22
23
24
25
26
27
28
29
30
    def forward(self, A, X, C):
        # A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD)
        self.save_for_backward(A, X, C)
        B, N, K = A.size()
        D = X.size(2)
        with torch.cuda.device_of(A):
            E = A.new(B,K,D)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
31
                encoding_lib.Encoding_Float_aggregate_forward(E, A, X, C)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
32
33
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
34
                encoding_lib.Encoding_Double_aggregate_forward(E, A, X, C)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
35
36
37
38
        else:
            raise RuntimeError('Unimplemented data type!')
        return E

Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
39
    @staticmethod
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
40
    def backward(self, gradE):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
41
        A, X, C = self.saved_variables
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
42
        with torch.cuda.device_of(A):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
43
44
45
46
47
48
49
50
51
52
53
            gradA = Variable(A.data.new().resize_as_(A.data))
            gradX = Variable(A.data.new().resize_as_(X.data))
            gradC = Variable(A.data.new().resize_as_(C.data))
        if isinstance(A.data, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A.data):
                encoding_lib.Encoding_Float_aggregate_backward(gradA.data, 
                    gradE.data, A.data, X.data, C.data)
        elif isinstance(A.data, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A.data):
                encoding_lib.Encoding_Double_aggregate_backward(gradA.data, 
                    gradE.data, A.data, X.data, C.data)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
54
55
        else:
            raise RuntimeError('Unimplemented data type!')
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
56
57
        gradX.data.copy_(torch.bmm(A, gradE).data)
        gradC.data.copy_((-gradE*A.sum(1).unsqueeze(2)).sum(0).data)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        return gradA, gradX, gradC

def aggregate(A, X, C):
    r"""
    Aggregate operation, aggregate the residuals of inputs (:math:`X`) with repect to the codewords (:math:`C`) with assignment weights (:math:`A`).
    

    .. math::
        e_{k} = \sum_{i=1}^{N} a_{ik} (x_i - d_k)

    Shape:
        - Input: :math:`A\in\mathcal{R}^{B\times N\times K}` :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}`  (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`

    Examples:
        >>> B,N,K,D = 2,3,4,5
        >>> A = Variable(torch.cuda.DoubleTensor(B,N,K).uniform_(-0.5,0.5), requires_grad=True)
        >>> X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True)
        >>> C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True)
        >>> func = encoding.aggregate()
        >>> E = func(A, X, C)

    """
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
81
    return _aggregate.apply(A, X, C)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
82
83

class _scaledL2(Function):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
84
    @staticmethod
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    def forward(self, X, C, S):
        B,N,D = X.size()
        K = C.size(0)
        with torch.cuda.device_of(X):
            SL = X.new(B,N,K)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_scaledl2_forward(SL, X, C, S)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_scaledl2_forward(SL, X, C, S)
        else:
            raise RuntimeError('Unimplemented data type!')
        self.save_for_backward(X, C, S, SL)
        return SL
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
100
101

    @staticmethod
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
102
    def backward(self, gradSL):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
103
        X, C, S, SL = self.saved_variables
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
104
        K = C.size(0)
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
105
106
107
108
109
110
111
112
113
114
115
116
        with torch.cuda.device_of(X.data):
            gradX = Variable(X.data.new().resize_as_(X.data))
            gradC = Variable(X.data.new().resize_as_(C.data))
            gradS = Variable(X.data.new().resize_as_(S.data))
        if isinstance(X.data, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X.data):
                encoding_lib.Encoding_Float_scaledl2_backward(gradSL.data, 
                    gradX.data, gradC.data, X.data, C.data, S.data)
        elif isinstance(X.data, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X.data):
                encoding_lib.Encoding_Double_scaledl2_backward(gradSL.data, 
                    gradX.data, gradC.data, X.data, C.data, S.data)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
117
118
        else:
            raise RuntimeError('Unimplemented data type!')
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
119
        gradS.data.copy_((gradSL*(SL/S.view(1,1,K))).sum(0).sum(0).data)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        return gradX, gradC, gradS


def scaledL2(X, C, S):
    r"""
    scaledL2 distance

    .. math::
        sl_{ik} = s_k \|x_i-c_k\|^2

    Shape:
        - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}` :math:`S\in \mathcal{R}^K` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times N\times K}`

    """
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
135
    return _scaledL2.apply(X, C, S)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
136
137