##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import threading import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function, Variable from .._ext import encoding_lib __all__ = ['aggregate', 'scaledL2'] class _aggregate(Function): @staticmethod def forward(self, A, X, C): # A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD) self.save_for_backward(A, X, C) B, N, K = A.size() D = X.size(2) with torch.cuda.device_of(A): E = A.new(B,K,D) if isinstance(A, torch.cuda.FloatTensor): with torch.cuda.device_of(A): encoding_lib.Encoding_Float_aggregate_forward(E, A, X, C) elif isinstance(A, torch.cuda.DoubleTensor): with torch.cuda.device_of(A): encoding_lib.Encoding_Double_aggregate_forward(E, A, X, C) else: raise RuntimeError('Unimplemented data type!') return E @staticmethod def backward(self, gradE): A, X, C = self.saved_variables with torch.cuda.device_of(A): gradA = Variable(A.data.new().resize_as_(A.data)) gradX = Variable(A.data.new().resize_as_(X.data)) gradC = Variable(A.data.new().resize_as_(C.data)) if isinstance(A.data, torch.cuda.FloatTensor): with torch.cuda.device_of(A.data): encoding_lib.Encoding_Float_aggregate_backward(gradA.data, gradE.data, A.data, X.data, C.data) elif isinstance(A.data, torch.cuda.DoubleTensor): with torch.cuda.device_of(A.data): encoding_lib.Encoding_Double_aggregate_backward(gradA.data, gradE.data, A.data, X.data, C.data) else: raise RuntimeError('Unimplemented data type!') gradX.data.copy_(torch.bmm(A, gradE).data) gradC.data.copy_((-gradE*A.sum(1).unsqueeze(2)).sum(0).data) return gradA, gradX, gradC def aggregate(A, X, C): r""" Aggregate operation, aggregate the residuals of inputs (:math:`X`) with repect to the codewords (:math:`C`) with assignment weights (:math:`A`). .. math:: e_{k} = \sum_{i=1}^{N} a_{ik} (x_i - d_k) Shape: - Input: :math:`A\in\mathcal{R}^{B\times N\times K}` :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.) - Output: :math:`E\in\mathcal{R}^{B\times K\times D}` Examples: >>> B,N,K,D = 2,3,4,5 >>> A = Variable(torch.cuda.DoubleTensor(B,N,K).uniform_(-0.5,0.5), requires_grad=True) >>> X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True) >>> C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True) >>> func = encoding.aggregate() >>> E = func(A, X, C) """ return _aggregate.apply(A, X, C) class _scaledL2(Function): @staticmethod def forward(self, X, C, S): B,N,D = X.size() K = C.size(0) with torch.cuda.device_of(X): SL = X.new(B,N,K) if isinstance(X, torch.cuda.FloatTensor): with torch.cuda.device_of(X): encoding_lib.Encoding_Float_scaledl2_forward(SL, X, C, S) elif isinstance(X, torch.cuda.DoubleTensor): with torch.cuda.device_of(X): encoding_lib.Encoding_Double_scaledl2_forward(SL, X, C, S) else: raise RuntimeError('Unimplemented data type!') self.save_for_backward(X, C, S, SL) return SL @staticmethod def backward(self, gradSL): X, C, S, SL = self.saved_variables K = C.size(0) with torch.cuda.device_of(X.data): gradX = Variable(X.data.new().resize_as_(X.data)) gradC = Variable(X.data.new().resize_as_(C.data)) gradS = Variable(X.data.new().resize_as_(S.data)) if isinstance(X.data, torch.cuda.FloatTensor): with torch.cuda.device_of(X.data): encoding_lib.Encoding_Float_scaledl2_backward(gradSL.data, gradX.data, gradC.data, X.data, C.data, S.data) elif isinstance(X.data, torch.cuda.DoubleTensor): with torch.cuda.device_of(X.data): encoding_lib.Encoding_Double_scaledl2_backward(gradSL.data, gradX.data, gradC.data, X.data, C.data, S.data) else: raise RuntimeError('Unimplemented data type!') gradS.data.copy_((gradSL*(SL/S.view(1,1,K))).sum(0).sum(0).data) return gradX, gradC, gradS def scaledL2(X, C, S): r""" scaledL2 distance .. math:: sl_{ik} = s_k \|x_i-c_k\|^2 Shape: - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}` :math:`S\in \mathcal{R}^K` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.) - Output: :math:`E\in\mathcal{R}^{B\times N\times K}` """ return _scaledL2.apply(X, C, S)