train.py 7.7 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
Hang Zhang's avatar
Hang Zhang committed
8
import copy
Hang Zhang's avatar
Hang Zhang committed
9
10
11
12
13
14
15
16
17
import numpy as np
from tqdm import tqdm

import torch
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather

import encoding.utils as utils
Hang Zhang's avatar
Hang Zhang committed
18
from encoding.nn import SegmentationLosses, SyncBatchNorm, OHEMSegmentationLosses
Hang Zhang's avatar
Hang Zhang committed
19
from encoding.parallel import DataParallelModel, DataParallelCriterion
Hang Zhang's avatar
Hang Zhang committed
20
from encoding.datasets import get_dataset
Hang Zhang's avatar
Hang Zhang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from encoding.models import get_segmentation_model

from option import Options

torch_ver = torch.__version__[:3]
if torch_ver == '0.3':
    from torch.autograd import Variable

class Trainer():
    def __init__(self, args):
        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])])
        # dataset
Hang Zhang's avatar
Hang Zhang committed
37
38
        data_kwargs = {'transform': input_transform, 'base_size': args.base_size,
                       'crop_size': args.crop_size}
Hang Zhang's avatar
Hang Zhang committed
39
        trainset = get_dataset(args.dataset, split=args.train_split, mode='train',
Hang Zhang's avatar
Hang Zhang committed
40
                                           **data_kwargs)
Hang Zhang's avatar
Hang Zhang committed
41
        testset = get_dataset(args.dataset, split='val', mode ='val',
Hang Zhang's avatar
Hang Zhang committed
42
                                           **data_kwargs)
Hang Zhang's avatar
Hang Zhang committed
43
44
45
46
47
48
49
50
51
52
53
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} \
            if args.cuda else {}
        self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
                                           drop_last=True, shuffle=True, **kwargs)
        self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
                                         drop_last=False, shuffle=False, **kwargs)
        self.nclass = trainset.num_class
        # model
        model = get_segmentation_model(args.model, dataset=args.dataset,
                                       backbone = args.backbone, aux = args.aux,
Hang Zhang's avatar
Hang Zhang committed
54
                                       se_loss = args.se_loss, norm_layer = SyncBatchNorm,
Hang Zhang's avatar
Hang Zhang committed
55
                                       base_size=args.base_size, crop_size=args.crop_size)
Hang Zhang's avatar
Hang Zhang committed
56
57
58
59
60
61
62
        print(model)
        # optimizer using different LR
        params_list = [{'params': model.pretrained.parameters(), 'lr': args.lr},]
        if hasattr(model, 'head'):
            params_list.append({'params': model.head.parameters(), 'lr': args.lr*10})
        if hasattr(model, 'auxlayer'):
            params_list.append({'params': model.auxlayer.parameters(), 'lr': args.lr*10})
Hang Zhang's avatar
Hang Zhang committed
63
64
        optimizer = torch.optim.SGD(params_list, lr=args.lr,
            momentum=args.momentum, weight_decay=args.weight_decay)
Hang Zhang's avatar
Hang Zhang committed
65
        # criterions
Hang Zhang's avatar
Hang Zhang committed
66
67
        self.criterion = SegmentationLosses(se_loss=args.se_loss,
                                            aux=args.aux,
Hang Zhang's avatar
Hang Zhang committed
68
69
70
                                            nclass=self.nclass, 
                                            se_weight=args.se_weight,
                                            aux_weight=args.aux_weight)
Hang Zhang's avatar
Hang Zhang committed
71
72
73
74
75
        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        # resuming checkpoint
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
Hang Zhang's avatar
Hang Zhang committed
91
92
93
        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
Hang Zhang's avatar
Hang Zhang committed
94
        # lr scheduler
Hang Zhang's avatar
Hang Zhang committed
95
96
        self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr,
                                            args.epochs, len(self.trainloader))
Hang Zhang's avatar
Hang Zhang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        self.best_pred = 0.0

    def training(self, epoch):
        train_loss = 0.0
        self.model.train()
        tbar = tqdm(self.trainloader)
        for i, (image, target) in enumerate(tbar):
            self.scheduler(self.optimizer, i, epoch, self.best_pred)
            self.optimizer.zero_grad()
            if torch_ver == "0.3":
                image = Variable(image)
                target = Variable(target)
            outputs = self.model(image)
            loss = self.criterion(outputs, target)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
            tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))

Hang Zhang's avatar
Hang Zhang committed
116
117
118
119
120
121
122
123
124
125
        if self.args.no_val:
            # save checkpoint every epoch
            is_best = False
            utils.save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': self.model.module.state_dict(),
                'optimizer': self.optimizer.state_dict(),
                'best_pred': self.best_pred,
            }, self.args, is_best)

Hang Zhang's avatar
Hang Zhang committed
126
127
128

    def validation(self, epoch):
        # Fast test during the training
Hang Zhang's avatar
Hang Zhang committed
129
130
        def eval_batch(model, image, target):
            outputs = model(image)
Hang Zhang's avatar
Hang Zhang committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            outputs = gather(outputs, 0, dim=0)
            pred = outputs[0]
            target = target.cuda()
            correct, labeled = utils.batch_pix_accuracy(pred.data, target)
            inter, union = utils.batch_intersection_union(pred.data, target, self.nclass)
            return correct, labeled, inter, union

        is_best = False
        self.model.eval()
        total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
        tbar = tqdm(self.valloader, desc='\r')
        for i, (image, target) in enumerate(tbar):
            if torch_ver == "0.3":
                image = Variable(image, volatile=True)
Hang Zhang's avatar
Hang Zhang committed
145
                correct, labeled, inter, union = eval_batch(self.model, image, target)
Hang Zhang's avatar
Hang Zhang committed
146
147
            else:
                with torch.no_grad():
Hang Zhang's avatar
Hang Zhang committed
148
                    correct, labeled, inter, union = eval_batch(self.model, image, target)
Hang Zhang's avatar
Hang Zhang committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

            total_correct += correct
            total_label += labeled
            total_inter += inter
            total_union += union
            pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
            IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
            mIoU = IoU.mean()
            tbar.set_description(
                'pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))

        new_pred = (pixAcc + mIoU)/2
        if new_pred > self.best_pred:
            is_best = True
            self.best_pred = new_pred
Hang Zhang's avatar
Hang Zhang committed
164
165
166
167
168
169
        utils.save_checkpoint({
            'epoch': epoch + 1,
            'state_dict': self.model.module.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'best_pred': self.best_pred,
        }, self.args, is_best)
Hang Zhang's avatar
Hang Zhang committed
170
171
172
173
174
175


if __name__ == "__main__":
    args = Options().parse()
    torch.manual_seed(args.seed)
    trainer = Trainer(args)
Hang Zhang's avatar
Hang Zhang committed
176
177
    print('Starting Epoch:', trainer.args.start_epoch)
    print('Total Epoches:', trainer.args.epochs)
Hang Zhang's avatar
Hang Zhang committed
178
179
180
181
182
183
184
    if args.eval:
        trainer.validation(trainer.args.start_epoch)
    else:
        for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
            trainer.training(epoch)
            if not trainer.args.no_val:
                trainer.validation(epoch)