train.py 7.23 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
Hang Zhang's avatar
Hang Zhang committed
8
import copy
Hang Zhang's avatar
Hang Zhang committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
from tqdm import tqdm

import torch
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather

import encoding.utils as utils
from encoding.nn import SegmentationLosses, BatchNorm2d
from encoding.parallel import DataParallelModel, DataParallelCriterion
from encoding.datasets import get_segmentation_dataset
from encoding.models import get_segmentation_model

from option import Options

torch_ver = torch.__version__[:3]
if torch_ver == '0.3':
    from torch.autograd import Variable

class Trainer():
    def __init__(self, args):
        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])])
        # dataset
        trainset = get_segmentation_dataset(args.dataset, split='train',
                                            transform=input_transform)
        testset = get_segmentation_dataset(args.dataset, split='val',
                                           transform=input_transform)
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} \
            if args.cuda else {}
        self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
                                           drop_last=True, shuffle=True, **kwargs)
        self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
                                         drop_last=False, shuffle=False, **kwargs)
        self.nclass = trainset.num_class
        # model
        model = get_segmentation_model(args.model, dataset=args.dataset,
                                       backbone = args.backbone, aux = args.aux,
                                       se_loss = args.se_loss, norm_layer = BatchNorm2d)
        print(model)
        # optimizer using different LR
        params_list = [{'params': model.pretrained.parameters(), 'lr': args.lr},]
        if hasattr(model, 'head'):
            params_list.append({'params': model.head.parameters(), 'lr': args.lr*10})
        if hasattr(model, 'auxlayer'):
            params_list.append({'params': model.auxlayer.parameters(), 'lr': args.lr*10})
        optimizer = torch.optim.SGD(params_list, 
                    lr=args.lr,
                    momentum=args.momentum,
                    weight_decay=args.weight_decay)
        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
        # criterions
Hang Zhang's avatar
Hang Zhang committed
68
69
        self.criterion = SegmentationLosses(se_loss=args.se_loss, aux=args.aux,
                                            nclass=self.nclass)
Hang Zhang's avatar
Hang Zhang committed
70
71
72
73
74
        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        # resuming checkpoint
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
Hang Zhang's avatar
Hang Zhang committed
90
        # lr scheduler
Hang Zhang's avatar
Hang Zhang committed
91
92
        self.scheduler = utils.LR_Scheduler(args.lr_scheduler, args.lr,
                                            args.epochs, len(self.trainloader))
Hang Zhang's avatar
Hang Zhang committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        self.best_pred = 0.0

    def training(self, epoch):
        train_loss = 0.0
        self.model.train()
        tbar = tqdm(self.trainloader)
        for i, (image, target) in enumerate(tbar):
            self.scheduler(self.optimizer, i, epoch, self.best_pred)
            self.optimizer.zero_grad()
            if torch_ver == "0.3":
                image = Variable(image)
                target = Variable(target)
            outputs = self.model(image)
            loss = self.criterion(outputs, target)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
            tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))

Hang Zhang's avatar
Hang Zhang committed
112
113
114
115
116
117
118
119
120
121
        if self.args.no_val:
            # save checkpoint every epoch
            is_best = False
            utils.save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': self.model.module.state_dict(),
                'optimizer': self.optimizer.state_dict(),
                'best_pred': self.best_pred,
            }, self.args, is_best)

Hang Zhang's avatar
Hang Zhang committed
122
123
124

    def validation(self, epoch):
        # Fast test during the training
Hang Zhang's avatar
Hang Zhang committed
125
126
        def eval_batch(model, image, target):
            outputs = model(image)
Hang Zhang's avatar
Hang Zhang committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            outputs = gather(outputs, 0, dim=0)
            pred = outputs[0]
            target = target.cuda()
            correct, labeled = utils.batch_pix_accuracy(pred.data, target)
            inter, union = utils.batch_intersection_union(pred.data, target, self.nclass)
            return correct, labeled, inter, union

        is_best = False
        self.model.eval()
        total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
        tbar = tqdm(self.valloader, desc='\r')
        for i, (image, target) in enumerate(tbar):
            if torch_ver == "0.3":
                image = Variable(image, volatile=True)
Hang Zhang's avatar
Hang Zhang committed
141
                correct, labeled, inter, union = eval_batch(self.model, image, target)
Hang Zhang's avatar
Hang Zhang committed
142
143
            else:
                with torch.no_grad():
Hang Zhang's avatar
Hang Zhang committed
144
                    correct, labeled, inter, union = eval_batch(self.model, image, target)
Hang Zhang's avatar
Hang Zhang committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

            total_correct += correct
            total_label += labeled
            total_inter += inter
            total_union += union
            pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
            IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
            mIoU = IoU.mean()
            tbar.set_description(
                'pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))

        new_pred = (pixAcc + mIoU)/2
        if new_pred > self.best_pred:
            is_best = True
            self.best_pred = new_pred
            utils.save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': self.model.module.state_dict(),
                'optimizer': self.optimizer.state_dict(),
                'best_pred': self.best_pred,
            }, self.args, is_best)


if __name__ == "__main__":
    args = Options().parse()
    torch.manual_seed(args.seed)
    trainer = Trainer(args)
    print('Starting Epoch:', args.start_epoch)
    print('Total Epoches:', args.epochs)
    for epoch in range(args.start_epoch, args.epochs):
        trainer.training(epoch)
        if not args.no_val:
            trainer.validation(epoch)