syncbn.py 5.36 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
Hang Zhang's avatar
sync BN  
Hang Zhang committed
8
## LICENSE file in the root directory of this source tree
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
sync BN  
Hang Zhang committed
11
"""Synchronized Batch Normalization functions"""
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
12
13
14
15
16
17
18
import torch
from torch.autograd import Function, Variable
from .._ext import encoding_lib

__all__ = ['sum_square', 'batchnormtrain', 'batchnormeval']

class _sum_square(Function):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
19
    @staticmethod
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
20
21
    def forward(ctx, input):
        ctx.save_for_backward(input)
Hang Zhang's avatar
sync BN  
Hang Zhang committed
22
        B, C, _, _ = input.size()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
23
        with torch.cuda.device_of(input):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
24
            xsum = input.new().resize_(C).zero_()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
25
26
27
28
            xsquare = input.new().resize_(C).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_sum_square_Forward(
Hang Zhang's avatar
sync BN  
Hang Zhang committed
29
                    input.view(B, C, -1), xsum, xsquare)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
30
31
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
32
33
                encoding_lib.Encoding_Double_sum_square_Forward(
                    input.view(B, C, -1), xsum, xsquare)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
34
        else:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
35
            raise RuntimeError('Unimplemented data type!')
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
36
37
        return xsum, xsquare

Hang Zhang's avatar
sync BN  
Hang Zhang committed
38
    @staticmethod
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
39
    def backward(ctx, gradSum, gradSquare):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
40
41
42
43
44
45
        input, = ctx.saved_variables
        B, C, H, W = input.data.size()
        with torch.cuda.device_of(input.data):
            gradInput = Variable(input.data.new().resize_(B, C, H*W).zero_())
        if isinstance(input.data, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input.data):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
46
                encoding_lib.Encoding_Float_sum_square_Backward(
Hang Zhang's avatar
sync BN  
Hang Zhang committed
47
48
49
50
51
                    gradInput, input.data.view(B, C, -1), gradSum, gradSquare)
        elif isinstance(input.data, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input.data):
                encoding_lib.Encoding_Double_sum_square_Backward(
                    gradInput, input.data.view(B, C, -1), gradSum, gradSquare)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
52
        else:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
53
54
            raise RuntimeError('Unimplemented data type!')
        return gradInput.view(B, C, H, W)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
55
56
57
58
59
60


def sum_square(input):
    r"""
    Calculate sum of elements and sum of squares for Batch Normalization.
    """
Hang Zhang's avatar
sync BN  
Hang Zhang committed
61
    return _sum_square.apply(input)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
62
63


Hang Zhang's avatar
path  
Hang Zhang committed
64
class _batchnorm(Function):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
65
66
67
    def __init__(self, training=False):
        super(_batchnorm, self).__init__()
        self.training = training
Hang Zhang's avatar
path  
Hang Zhang committed
68

Hang Zhang's avatar
sync BN  
Hang Zhang committed
69
70
71
    def forward(self, input, gamma, beta, mean, std):
        self.save_for_backward(input, gamma, beta, mean, std)
        assert(input.dim() == 3)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
72
73
74
75
76
        with torch.cuda.device_of(input):
            invstd = 1.0 / std
            output = input.new().resize_as_(input)
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
77
                encoding_lib.Encoding_Float_batchnorm_Forward(output, \
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
78
79
80
                    input, mean, invstd, gamma, beta)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
81
                encoding_lib.Encoding_Double_batchnorm_Forward(output, \
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
82
83
84
                    input, mean, invstd, gamma, beta)
        else:
            raise RuntimeError('Unimplemented data type!')
Hang Zhang's avatar
sync BN  
Hang Zhang committed
85
        return output
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
86

Hang Zhang's avatar
sync BN  
Hang Zhang committed
87
88
    def backward(self, gradOutput):
        input, gamma, beta, mean, std = self.saved_tensors
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
89
90
91
92
        invstd = 1.0 / std
        with torch.cuda.device_of(input):
            gradInput = gradOutput.new().resize_as_(input).zero_()
            gradGamma = gradOutput.new().resize_as_(gamma).zero_()
Hang Zhang's avatar
sync BN  
Hang Zhang committed
93
94
95
            gradBeta = gradOutput.new().resize_as_(beta).zero_()
            gradMean = gradOutput.new().resize_as_(mean).zero_()
            gradStd = gradOutput.new().resize_as_(std).zero_()
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
96
97
98
99

        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Backward(
Hang Zhang's avatar
sync BN  
Hang Zhang committed
100
                    gradOutput, input, gradInput, gradGamma, gradBeta,
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
101
                    mean, invstd, gamma, beta, gradMean, gradStd,
Hang Zhang's avatar
sync BN  
Hang Zhang committed
102
                    self.training)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
103
104
105
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Backward(
Hang Zhang's avatar
sync BN  
Hang Zhang committed
106
                    gradOutput, input, gradInput, gradGamma, gradBeta,
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
107
                    mean, invstd, gamma, beta, gradMean, gradStd,
Hang Zhang's avatar
sync BN  
Hang Zhang committed
108
                    self.training)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradInput, gradGamma, gradBeta, gradMean, gradStd


def batchnormtrain(input, gamma, beta, mean, std):
    r"""Applies Batch Normalization over a 3d input that is seen as a
    mini-batch.

    .. _encoding.batchnormtrain:

    .. math::

        y = \frac{x - \mu[x]}{ \sqrt{var[x] + \epsilon}} * \gamma + \beta

    Shape:
        - Input: :math:`(N, C)` or :math:`(N, C, L)`
        - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)

    """
Hang Zhang's avatar
path  
Hang Zhang committed
129
    return _batchnorm(True)(input, gamma, beta, mean, std)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
130
131
132
133
134
135
136
137


def batchnormeval(input, gamma, beta, mean, std):
    r"""Applies Batch Normalization over a 3d input that is seen as a
    mini-batch.

    Please see encoding.batchnormtrain_
    """
Hang Zhang's avatar
path  
Hang Zhang committed
138
    return _batchnorm(False)(input, gamma, beta, mean, std)