syncbn.py 7.25 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable
from .._ext import encoding_lib

__all__ = ['sum_square', 'batchnormtrain', 'batchnormeval']

class _sum_square(Function):
    def forward(ctx, input):
        ctx.save_for_backward(input)
        B,C,H,W = input.size()
        with torch.cuda.device_of(input):
            xsum    = input.new().resize_(C).zero_()
            xsquare = input.new().resize_(C).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_sum_square_Forward(
                    input.view(B,C,-1), xsum, xsquare)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_sum_square_Forward( 
                    input.view(B,C,-1), xsum, xsquare)
        else:
            raise RuntimeError('Unimplemented data type!') 
        return xsum, xsquare

    def backward(ctx, gradSum, gradSquare):
        input, = ctx.saved_tensors
        B,C,H,W = input.size()
        with torch.cuda.device_of(input):
            gradInput = input.new().resize_(B,C,H*W).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_sum_square_Backward(
                    gradInput, input.view(B,C,-1), gradSum, gradSquare)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_sum_square_Backward( 
                    gradInput, input.view(B,C,-1), gradSum, gradSquare)
        else:
            raise RuntimeError('Unimplemented data type!') 
        return gradInput.view(B,C,H,W)


def sum_square(input):
    r"""
    Calculate sum of elements and sum of squares for Batch Normalization.
    """
    return _sum_square()(input)


class _batchnormtrain(Function):
    def forward(ctx, input, gamma, beta, mean, std):
        ctx.save_for_backward(input, gamma, beta, mean, std)
        assert(input.dim()==3)
        with torch.cuda.device_of(input):
            invstd = 1.0 / std
            output = input.new().resize_as_(input)
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        else:
            raise RuntimeError('Unimplemented data type!')
        return output 

    def backward(ctx, gradOutput):
        input, gamma, beta, mean, std = ctx.saved_tensors
        invstd = 1.0 / std
        with torch.cuda.device_of(input):
            gradInput = gradOutput.new().resize_as_(input).zero_()
            gradGamma = gradOutput.new().resize_as_(gamma).zero_()
            gradBeta  = gradOutput.new().resize_as_(beta).zero_()
            gradMean  = gradOutput.new().resize_as_(mean).zero_()
            gradStd   = gradOutput.new().resize_as_(std).zero_()

        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    True) 
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    True) 
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradInput, gradGamma, gradBeta, gradMean, gradStd


def batchnormtrain(input, gamma, beta, mean, std):
    r"""Applies Batch Normalization over a 3d input that is seen as a
    mini-batch.

    .. _encoding.batchnormtrain:

    .. math::

        y = \frac{x - \mu[x]}{ \sqrt{var[x] + \epsilon}} * \gamma + \beta

    Shape:
        - Input: :math:`(N, C)` or :math:`(N, C, L)`
        - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)

    """
    return _batchnormtrain()(input, gamma, beta, mean, std)


class _batchnormeval(Function):
    def forward(ctx, input, gamma, beta, mean, std):
        ctx.save_for_backward(input, gamma, beta, mean, std)
        assert(input.dim()==3)
        with torch.cuda.device_of(input):
            invstd = 1.0 / std
            output = input.new().resize_as_(input)
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Forward(output, 
                    input, mean, invstd, gamma, beta)
        else:
            raise RuntimeError('Unimplemented data type!')
        return output 

    def backward(ctx, gradOutput):
        input, gamma, beta, mean, std = ctx.saved_tensors
        invstd = 1.0 / std
        with torch.cuda.device_of(input):
            gradInput = gradOutput.new().resize_as_(input).zero_()
            gradGamma = gradOutput.new().resize_as_(gamma).zero_()
            gradBeta  = gradOutput.new().resize_as_(beta).zero_()
            gradMean  = gradOutput.new().resize_as_(mean).zero_()
            gradStd   = gradOutput.new().resize_as_(std).zero_()
        if isinstance(input, torch.cuda.FloatTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Float_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    False) 
        elif isinstance(input, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(input):
                encoding_lib.Encoding_Double_batchnorm_Backward(
                    gradOutput, input, gradInput, gradGamma, gradBeta, 
                    mean, invstd, gamma, beta, gradMean, gradStd,
                    False) 
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradInput, gradGamma, gradBeta, gradMean, gradStd


def batchnormeval(input, gamma, beta, mean, std):
    r"""Applies Batch Normalization over a 3d input that is seen as a
    mini-batch.

    Please see encoding.batchnormtrain_
    """
    return _batchnormeval()(input, gamma, beta, mean, std)