"examples/mxnet/_deprecated/sampling/multi_process_train.py" did not exist on "4b761571b27c9ca33c34d3dfe94cca658a04906d"
segmentation.rst 8.15 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
Context Encoding for Semantic Segmentation (EncNet)
===================================================

Install Package
---------------

- Clone the GitHub repo::
    
Hang Zhang's avatar
Hang Zhang committed
9
    git clone https://github.com/zhanghang1989/PyTorch-Encoding
Zhang's avatar
v0.4.2  
Zhang committed
10
11
12

- Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_.

Hang Zhang's avatar
Hang Zhang committed
13
14
Get Pre-trained Model
---------------------
Zhang's avatar
v0.4.2  
Zhang committed
15
16
17
18
19
20
21
22
23
24
25

.. hint::
    The model names contain the training information. For instance ``FCN_ResNet50_PContext``:
      - ``FCN`` indicate the algorithm is Fully Convolutional Network for Semantic Segmentation
      - ``ResNet50`` is the name of backbone network.
      - ``PContext`` means the PASCAL in Context dataset.

    How to get pretrained model, for example ``FCN_ResNet50_PContext``::

        model = encoding.models.get_model('FCN_ResNet50_PContext', pretrained=True)

Hang Zhang's avatar
Hang Zhang committed
26
    After clicking ``cmd`` in the table, the command for training the model can be found below the table.
Zhang's avatar
v0.4.2  
Zhang committed
27
28
29
30

.. role:: raw-html(raw)
   :format: html

Hang Zhang's avatar
Hang Zhang committed
31
32
33
34
35
36
37
38
39
40
41
42

.. tabularcolumns:: |>{\centering\arraybackslash}\X{4}{5}|>{\raggedleft\arraybackslash}\X{1}{5}|

==============================================================================  ==============    ==============    =============================================================================================
Model                                                                           pixAcc            mIoU              Command                                                                                      
==============================================================================  ==============    ==============    =============================================================================================
Encnet_ResNet50_PContext                                                        79.2%             51.0%             :raw-html:`<a href="javascript:toggleblock('cmd_enc50_pcont')" class="toggleblock">cmd</a>`  
EncNet_ResNet101_PContext                                                       80.7%             54.1%             :raw-html:`<a href="javascript:toggleblock('cmd_enc101_pcont')" class="toggleblock">cmd</a>` 
EncNet_ResNet50_ADE                                                             80.1%             41.5%             :raw-html:`<a href="javascript:toggleblock('cmd_enc50_ade')" class="toggleblock">cmd</a>`    
EncNet_ResNet101_ADE                                                            81.3%             44.4%             :raw-html:`<a href="javascript:toggleblock('cmd_enc101_ade')" class="toggleblock">cmd</a>`   
EncNet_ResNet101_VOC                                                            N/A               85.9%             :raw-html:`<a href="javascript:toggleblock('cmd_enc101_voc')" class="toggleblock">cmd</a>`   
==============================================================================  ==============    ==============    =============================================================================================
Hang Zhang's avatar
Hang Zhang committed
43

Zhang's avatar
v0.4.2  
Zhang committed
44
45
46
47
48
49
50
51
52
53
54

.. raw:: html

    <code xml:space="preserve" id="cmd_fcn50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model FCN
    </code>

    <code xml:space="preserve" id="cmd_enc50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model EncNet --aux --se-loss
    </code>

Hang Zhang's avatar
Hang Zhang committed
55
56
57
58
    <code xml:space="preserve" id="cmd_enc101_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model EncNet --aux --se-loss --backbone resnet101
    </code>

Hang Zhang's avatar
Hang Zhang committed
59
60
61
62
63
    <code xml:space="preserve" id="cmd_psp50_ade" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model PSP --aux
    </code>

    <code xml:space="preserve" id="cmd_enc50_ade" style="display: none; text-align: left; white-space: pre-wrap">
Hang Zhang's avatar
Hang Zhang committed
64
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model EncNet --aux --se-loss
Hang Zhang's avatar
Hang Zhang committed
65
66
    </code>

Hang Zhang's avatar
Hang Zhang committed
67
68

    <code xml:space="preserve" id="cmd_enc101_ade" style="display: none; text-align: left; white-space: pre-wrap">
69
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset ADE20K --model EncNet --aux --se-loss --backbone resnet101 --base-size 640 --crop-size 576
Hang Zhang's avatar
Hang Zhang committed
70
71
72
73
74
    </code>

    <code xml:space="preserve" id="cmd_enc101_voc" style="display: none; text-align: left; white-space: pre-wrap">
    # First finetuning COCO dataset pretrained model on augmented set
    # You can also train from scratch on COCO by yourself
75
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset Pascal_aug --model-zoo EncNet_Resnet101_COCO --aux --se-loss --lr 0.001 --syncbn --ngpus 4 --checkname res101 --ft
Hang Zhang's avatar
Hang Zhang committed
76
    # Finetuning on original set
77
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset Pascal_voc --model encnet --aux  --se-loss --backbone resnet101 --lr 0.0001 --syncbn --ngpus 4 --checkname res101 --resume runs/Pascal_aug/encnet/res101/checkpoint.params --ft
Hang Zhang's avatar
Hang Zhang committed
78
79
    </code>

Hang Zhang's avatar
Hang Zhang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
Test Pretrained
~~~~~~~~~~~~~~~

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``PASCAL Context`` dataset::

      python scripts/prepare_pcontext.py
  
- The test script is in the ``experiments/segmentation/`` folder. For evaluating the model (using MS),
  for example ``Encnet_ResNet50_PContext``::

      python test.py --dataset PContext --model-zoo Encnet_ResNet50_PContext --eval
      # pixAcc: 0.792, mIoU: 0.510: 100%|████████████████████████| 1276/1276 [46:31<00:00,  2.19s/it]

Zhang's avatar
v0.4.2  
Zhang committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
Quick Demo
~~~~~~~~~~

.. code-block:: python

    import torch
    import encoding

    # Get the model
    model = encoding.models.get_model('Encnet_ResNet50_PContext', pretrained=True).cuda()
    model.eval()

    # Prepare the image
    url = 'https://github.com/zhanghang1989/image-data/blob/master/' + \
          'encoding/segmentation/pcontext/2010_001829_org.jpg?raw=true'
    filename = 'example.jpg'
    img = encoding.utils.load_image(
        encoding.utils.download(url, filename)).cuda().unsqueeze(0)

    # Make prediction
    output = model.evaluate(img)
    predict = torch.max(output, 1)[1].cpu().numpy() + 1

    # Get color pallete for visualization
    mask = encoding.utils.get_mask_pallete(predict, 'pcontext')
    mask.save('output.png')


.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829_org.jpg
   :width: 45%

.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829.png
   :width: 45%

Train Your Own Model
--------------------

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``PASCAL Context`` dataset::

    python scripts/prepare_pcontext.py

- The training script is in the ``experiments/segmentation/`` folder, example training command::

    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset pcontext --model encnet --aux --se-loss

Hang Zhang's avatar
Hang Zhang committed
138
- Detail training options, please run ``python train.py -h``. Commands for reproducing pre-trained models can be found in the table.
Zhang's avatar
v0.4.2  
Zhang committed
139

Hang Zhang's avatar
Hang Zhang committed
140
141
142
143
.. hint::
    The validation metrics during the training only using center-crop is just for monitoring the
    training correctness purpose. For evaluating the pretrained model on validation set using MS,
    please use the command::
Hang Zhang's avatar
Hang Zhang committed
144

Hang Zhang's avatar
Hang Zhang committed
145
        CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset pcontext --model encnet --aux --se-loss --resume mycheckpoint --eval
Hang Zhang's avatar
Hang Zhang committed
146

Zhang's avatar
v0.4.2  
Zhang committed
147
148
149
150
151
152
153
154
155
156
157
158
159
Citation
--------

.. note::
    * Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation"  *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*::

        @InProceedings{Zhang_2018_CVPR,
        author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
        title = {Context Encoding for Semantic Segmentation},
        booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2018}
        }