segmentation.rst 5.56 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Context Encoding for Semantic Segmentation (EncNet)
===================================================

Install Package
---------------

- Clone the GitHub repo::
    
    git clone git@github.com:zhanghang1989/PyTorch-Encoding.git

- Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_.

Test Pre-trained Model
----------------------

.. hint::
    The model names contain the training information. For instance ``FCN_ResNet50_PContext``:
      - ``FCN`` indicate the algorithm is Fully Convolutional Network for Semantic Segmentation
      - ``ResNet50`` is the name of backbone network.
      - ``PContext`` means the PASCAL in Context dataset.

    How to get pretrained model, for example ``FCN_ResNet50_PContext``::

        model = encoding.models.get_model('FCN_ResNet50_PContext', pretrained=True)

    The test script is in the ``experiments/segmentation/`` folder. For evaluating the model (using MS),
    for example ``Encnet_ResNet50_PContext``::

        python test.py --dataset PContext --model-zoo Encnet_ResNet50_PContext --eval
        # pixAcc: 0.7862, mIoU: 0.4946: 100%|████████████████████████| 319/319 [09:44<00:00,  1.83s/it]

    The command for training the model can be found by clicking ``cmd`` in the table.

.. role:: raw-html(raw)
   :format: html

Hang Zhang's avatar
Hang Zhang committed
37
38
39
40
41
42
43
44
45
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| Model                            | pixAcc    | mIoU      | Command                                                                                      |
+==================================+===========+===========+==============================================================================================+
| FCN_ResNet50_PContext            | 76.0%     | 45.7      | :raw-html:`<a href="javascript:toggleblock('cmd_fcn50_pcont')" class="toggleblock">cmd</a>`  |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| Encnet_ResNet50_PContext         | 78.6%     | 49.5      | :raw-html:`<a href="javascript:toggleblock('cmd_enc50_pcont')" class="toggleblock">cmd</a>`  |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
| Encnet_ResNet101_PContext        | 80.0%     | 52.1      | :raw-html:`<a href="javascript:toggleblock('cmd_enc101_pcont')" class="toggleblock">cmd</a>` |
+----------------------------------+-----------+-----------+----------------------------------------------------------------------------------------------+
Zhang's avatar
v0.4.2  
Zhang committed
46
47
48
49
50
51
52
53
54
55
56

.. raw:: html

    <code xml:space="preserve" id="cmd_fcn50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model FCN
    </code>

    <code xml:space="preserve" id="cmd_enc50_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model EncNet --aux --se-loss
    </code>

Hang Zhang's avatar
Hang Zhang committed
57
58
59
60
    <code xml:space="preserve" id="cmd_enc101_pcont" style="display: none; text-align: left; white-space: pre-wrap">
    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset PContext --model EncNet --aux --se-loss --backbone resnet101
    </code>

Zhang's avatar
v0.4.2  
Zhang committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Quick Demo
~~~~~~~~~~

.. code-block:: python

    import torch
    import encoding

    # Get the model
    model = encoding.models.get_model('Encnet_ResNet50_PContext', pretrained=True).cuda()
    model.eval()

    # Prepare the image
    url = 'https://github.com/zhanghang1989/image-data/blob/master/' + \
          'encoding/segmentation/pcontext/2010_001829_org.jpg?raw=true'
    filename = 'example.jpg'
    img = encoding.utils.load_image(
        encoding.utils.download(url, filename)).cuda().unsqueeze(0)

    # Make prediction
    output = model.evaluate(img)
    predict = torch.max(output, 1)[1].cpu().numpy() + 1

    # Get color pallete for visualization
    mask = encoding.utils.get_mask_pallete(predict, 'pcontext')
    mask.save('output.png')


.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829_org.jpg
   :width: 45%

.. image:: https://raw.githubusercontent.com/zhanghang1989/image-data/master/encoding/segmentation/pcontext/2010_001829.png
   :width: 45%

Train Your Own Model
--------------------

- Prepare the datasets by runing the scripts in the ``scripts/`` folder, for example preparing ``PASCAL Context`` dataset::

    python scripts/prepare_pcontext.py

- The training script is in the ``experiments/segmentation/`` folder, example training command::

    CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset pcontext --model encnet --aux --se-loss

- Detail training options, please run ``python train.py -h``.

Citation
--------

.. note::
    * Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation"  *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*::

        @InProceedings{Zhang_2018_CVPR,
        author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
        title = {Context Encoding for Semantic Segmentation},
        booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
        month = {June},
        year = {2018}
        }