option.py 5.8 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
import argparse
import torch

class Options():
    def __init__(self):
        parser = argparse.ArgumentParser(description='PyTorch \
            Segmentation')
        # model and dataset 
        parser.add_argument('--model', type=str, default='encnet',
                            help='model name (default: encnet)')
        parser.add_argument('--backbone', type=str, default='resnet50',
                            help='backbone name (default: resnet50)')
        parser.add_argument('--dataset', type=str, default='ade20k',
                            help='dataset name (default: pascal12)')
        parser.add_argument('--data-folder', type=str,
                            default=os.path.join(os.environ['HOME'], 'data'),
                            help='training dataset folder (default: \
                            $(HOME)/data)')
Hang Zhang's avatar
Hang Zhang committed
26
        parser.add_argument('--workers', type=int, default=16,
Hang Zhang's avatar
Hang Zhang committed
27
                            metavar='N', help='dataloader threads')
Hang Zhang's avatar
Hang Zhang committed
28
        parser.add_argument('--base-size', type=int, default=520,
Hang Zhang's avatar
Hang Zhang committed
29
                            help='base image size')
Hang Zhang's avatar
Hang Zhang committed
30
        parser.add_argument('--crop-size', type=int, default=480,
Hang Zhang's avatar
Hang Zhang committed
31
                            help='crop image size')
Hang Zhang's avatar
Hang Zhang committed
32
33
        parser.add_argument('--train-split', type=str, default='train',
                        help='dataset train split (default: train)')
Hang Zhang's avatar
Hang Zhang committed
34
35
36
        # training hyper params
        parser.add_argument('--aux', action='store_true', default= False,
                            help='Auxilary Loss')
Hang Zhang's avatar
Hang Zhang committed
37
38
        parser.add_argument('--aux-weight', type=float, default=0.2,
                            help='Auxilary loss weight (default: 0.2)')
Hang Zhang's avatar
Hang Zhang committed
39
40
        parser.add_argument('--se-loss', action='store_true', default= False,
                            help='Semantic Encoding Loss SE-loss')
Hang Zhang's avatar
Hang Zhang committed
41
42
        parser.add_argument('--se-weight', type=float, default=0.2,
                            help='SE-loss weight (default: 0.2)')
Hang Zhang's avatar
Hang Zhang committed
43
44
45
46
47
48
49
        parser.add_argument('--epochs', type=int, default=None, metavar='N',
                            help='number of epochs to train (default: auto)')
        parser.add_argument('--start_epoch', type=int, default=0,
                            metavar='N', help='start epochs (default:0)')
        parser.add_argument('--batch-size', type=int, default=None,
                            metavar='N', help='input batch size for \
                            training (default: auto)')
Hang Zhang's avatar
Hang Zhang committed
50
        parser.add_argument('--test-batch-size', type=int, default=None,
Hang Zhang's avatar
Hang Zhang committed
51
                            metavar='N', help='input batch size for \
Hang Zhang's avatar
Hang Zhang committed
52
                            testing (default: same as batch size)')
Hang Zhang's avatar
Hang Zhang committed
53
        # optimizer params
Hang Zhang's avatar
Hang Zhang committed
54
55
        parser.add_argument('--lr', type=float, default=None, metavar='LR',
                            help='learning rate (default: auto)')
Hang Zhang's avatar
Hang Zhang committed
56
        parser.add_argument('--lr-scheduler', type=str, default='poly',
Hang Zhang's avatar
Hang Zhang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
                            help='learning rate scheduler (default: poly)')
        parser.add_argument('--momentum', type=float, default=0.9,
                            metavar='M', help='momentum (default: 0.9)')
        parser.add_argument('--weight-decay', type=float, default=1e-4,
                            metavar='M', help='w-decay (default: 1e-4)')
        # cuda, seed and logging
        parser.add_argument('--no-cuda', action='store_true', default=
                            False, help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--checkname', type=str, default='default',
                            help='set the checkpoint name')
        parser.add_argument('--model-zoo', type=str, default=None,
                            help='evaluating on model zoo model')
        # finetuning pre-trained models
        parser.add_argument('--ft', action='store_true', default= False,
                            help='finetuning on a different dataset')
        # evaluation option
        parser.add_argument('--eval', action='store_true', default= False,
                            help='evaluating mIoU')
        parser.add_argument('--no-val', action='store_true', default= False,
                            help='skip validation during training')
        # test option
        parser.add_argument('--test-folder', type=str, default=None,
                            help='path to test image folder')
        # the parser
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        args.cuda = not args.no_cuda and torch.cuda.is_available()
        # default settings for epochs, batch_size and lr
        if args.epochs is None:
            epoches = {
Hang Zhang's avatar
Hang Zhang committed
94
                'coco': 30,
95
                'citys': 240,
Hang Zhang's avatar
Hang Zhang committed
96
97
                'pascal_voc': 50,
                'pascal_aug': 50,
Hang Zhang's avatar
Hang Zhang committed
98
                'pcontext': 80,
Hang Zhang's avatar
Hang Zhang committed
99
                'ade20k': 120,
Hang Zhang's avatar
Hang Zhang committed
100
101
102
            }
            args.epochs = epoches[args.dataset.lower()]
        if args.batch_size is None:
103
            args.batch_size = 16
Hang Zhang's avatar
Hang Zhang committed
104
105
        if args.test_batch_size is None:
            args.test_batch_size = args.batch_size
Hang Zhang's avatar
Hang Zhang committed
106
107
        if args.lr is None:
            lrs = {
Hang Zhang's avatar
Hang Zhang committed
108
109
                'coco': 0.01,
                'citys': 0.01,
Hang Zhang's avatar
Hang Zhang committed
110
111
112
113
114
115
                'pascal_voc': 0.0001,
                'pascal_aug': 0.001,
                'pcontext': 0.001,
                'ade20k': 0.01,
            }
            args.lr = lrs[args.dataset.lower()] / 16 * args.batch_size
Hang Zhang's avatar
Hang Zhang committed
116
        print(args)
Hang Zhang's avatar
Hang Zhang committed
117
        return args