"torchvision/vscode:/vscode.git/clone" did not exist on "3926c905b74af680b181fb06cca8ab7d871813af"
option.py 5.32 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
import argparse
import torch

class Options():
    def __init__(self):
        parser = argparse.ArgumentParser(description='PyTorch \
            Segmentation')
        # model and dataset 
        parser.add_argument('--model', type=str, default='encnet',
                            help='model name (default: encnet)')
        parser.add_argument('--backbone', type=str, default='resnet50',
                            help='backbone name (default: resnet50)')
        parser.add_argument('--dataset', type=str, default='ade20k',
                            help='dataset name (default: pascal12)')
        parser.add_argument('--data-folder', type=str,
                            default=os.path.join(os.environ['HOME'], 'data'),
                            help='training dataset folder (default: \
                            $(HOME)/data)')
Hang Zhang's avatar
Hang Zhang committed
26
        parser.add_argument('--workers', type=int, default=16,
Hang Zhang's avatar
Hang Zhang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
                            metavar='N', help='dataloader threads')
        # training hyper params
        parser.add_argument('--aux', action='store_true', default= False,
                            help='Auxilary Loss')
        parser.add_argument('--se-loss', action='store_true', default= False,
                            help='Semantic Encoding Loss SE-loss')
        parser.add_argument('--epochs', type=int, default=None, metavar='N',
                            help='number of epochs to train (default: auto)')
        parser.add_argument('--start_epoch', type=int, default=0,
                            metavar='N', help='start epochs (default:0)')
        parser.add_argument('--batch-size', type=int, default=None,
                            metavar='N', help='input batch size for \
                            training (default: auto)')
Hang Zhang's avatar
Hang Zhang committed
40
        parser.add_argument('--test-batch-size', type=int, default=None,
Hang Zhang's avatar
Hang Zhang committed
41
                            metavar='N', help='input batch size for \
Hang Zhang's avatar
Hang Zhang committed
42
                            testing (default: same as batch size)')
Hang Zhang's avatar
Hang Zhang committed
43
44
        parser.add_argument('--lr', type=float, default=None, metavar='LR',
                            help='learning rate (default: auto)')
Hang Zhang's avatar
Hang Zhang committed
45
        parser.add_argument('--lr-scheduler', type=str, default='poly',
Hang Zhang's avatar
Hang Zhang committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
                            help='learning rate scheduler (default: poly)')
        parser.add_argument('--momentum', type=float, default=0.9,
                            metavar='M', help='momentum (default: 0.9)')
        parser.add_argument('--weight-decay', type=float, default=1e-4,
                            metavar='M', help='w-decay (default: 1e-4)')
        # cuda, seed and logging
        parser.add_argument('--no-cuda', action='store_true', default=
                            False, help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--checkname', type=str, default='default',
                            help='set the checkpoint name')
        parser.add_argument('--model-zoo', type=str, default=None,
                            help='evaluating on model zoo model')
        # finetuning pre-trained models
        parser.add_argument('--ft', action='store_true', default= False,
                            help='finetuning on a different dataset')
        parser.add_argument('--pre-class', type=int, default=None,
                            help='num of pre-trained classes \
                            (default: None)')
        # evaluation option
Hang Zhang's avatar
Hang Zhang committed
70
71
        parser.add_argument('--ema', action='store_true', default= False,
                            help='using EMA evaluation')
Hang Zhang's avatar
Hang Zhang committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        parser.add_argument('--eval', action='store_true', default= False,
                            help='evaluating mIoU')
        parser.add_argument('--no-val', action='store_true', default= False,
                            help='skip validation during training')
        # test option
        parser.add_argument('--test-folder', type=str, default=None,
                            help='path to test image folder')
        # the parser
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        args.cuda = not args.no_cuda and torch.cuda.is_available()
        # default settings for epochs, batch_size and lr
        if args.epochs is None:
            epoches = {
                'pascal_voc': 50,
                'pascal_aug': 50,
Hang Zhang's avatar
Hang Zhang committed
90
                'pcontext': 80,
Hang Zhang's avatar
Hang Zhang committed
91
92
93
94
95
                'ade20k': 120,
            }
            args.epochs = epoches[args.dataset.lower()]
        if args.batch_size is None:
            args.batch_size = 4 * torch.cuda.device_count()
Hang Zhang's avatar
Hang Zhang committed
96
97
        if args.test_batch_size is None:
            args.test_batch_size = args.batch_size
Hang Zhang's avatar
Hang Zhang committed
98
99
100
101
102
103
104
105
106
        if args.lr is None:
            lrs = {
                'pascal_voc': 0.0001,
                'pascal_aug': 0.001,
                'pcontext': 0.001,
                'ade20k': 0.01,
            }
            args.lr = lrs[args.dataset.lower()] / 16 * args.batch_size
        return args