".github/vscode:/vscode.git/clone" did not exist on "c0f5492ee952df7d72208ba3951aaa56b3317fd8"
ade20k.py 5.93 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
###########################################################################
# Created by: Hang Zhang
# Email: zhang.hang@rutgers.edu
# Copyright (c) 2017
###########################################################################

import os
import sys
import numpy as np
import random
import math
from PIL import Image, ImageOps, ImageFilter

import torch
import torch.utils.data as data
import torchvision.transforms as transform

from .base import BaseDataset

class ADE20KSegmentation(BaseDataset):
    BASE_DIR = 'ADEChallengeData2016'
    NUM_CLASS = 150
    def __init__(self, root=os.path.expanduser('~/.encoding/data'), split='train',
Hang Zhang's avatar
Hang Zhang committed
24
                 mode=None, transform=None, target_transform=None, **kwargs):
Zhang's avatar
v0.4.2  
Zhang committed
25
        super(ADE20KSegmentation, self).__init__(
Hang Zhang's avatar
Hang Zhang committed
26
            root, split, mode, transform, target_transform, **kwargs)
Zhang's avatar
v0.4.2  
Zhang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        # assert exists and prepare dataset automatically
        root = os.path.join(root, self.BASE_DIR)
        assert os.path.exists(root), "Please setup the dataset using" + \
            "encoding/scripts/prepare_ade20k.py"
        self.images, self.masks = _get_ade20k_pairs(root, split)
        if split != 'test':
            assert (len(self.images) == len(self.masks))
        if len(self.images) == 0:
            raise(RuntimeError("Found 0 images in subfolders of: \
                " + root + "\n"))

    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        if self.mode == 'test':
            if self.transform is not None:
                img = self.transform(img)
            return img, os.path.basename(self.images[index])
        mask = Image.open(self.masks[index])
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            mask = self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            mask = self.target_transform(mask)
        return img, mask

Hang Zhang's avatar
Hang Zhang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    #def _sync_transform(self, img, mask):
    #    # random mirror
    #    if random.random() < 0.5:
    #        img = img.transpose(Image.FLIP_LEFT_RIGHT)
    #        mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
    #    crop_size = self.crop_size
    #    # random scale (short edge)
    #    w, h = img.size
    #    long_size = random.randint(int(self.base_size*0.5), int(self.base_size*2.0))
    #    if h > w:
    #        oh = long_size
    #        ow = int(1.0 * w * long_size / h + 0.5)
    #        short_size = ow
    #    else:
    #        ow = long_size
    #        oh = int(1.0 * h * long_size / w + 0.5)
    #        short_size = oh
    #    img = img.resize((ow, oh), Image.BILINEAR)
    #    mask = mask.resize((ow, oh), Image.NEAREST)
    #    # pad crop
    #    if short_size < crop_size:
    #        padh = crop_size - oh if oh < crop_size else 0
    #        padw = crop_size - ow if ow < crop_size else 0
    #        img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)
    #        mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=0)
    #    # random crop crop_size
    #    w, h = img.size
    #    x1 = random.randint(0, w - crop_size)
    #    y1 = random.randint(0, h - crop_size)
    #    img = img.crop((x1, y1, x1+crop_size, y1+crop_size))
    #    mask = mask.crop((x1, y1, x1+crop_size, y1+crop_size))
    #    # gaussian blur as in PSP
    #    if random.random() < 0.5:
    #        img = img.filter(ImageFilter.GaussianBlur(
    #            radius=random.random()))
    #    # final transform
    #    return img, self._mask_transform(mask)
Hang Zhang's avatar
Hang Zhang committed
97

Zhang's avatar
v0.4.2  
Zhang committed
98
    def _mask_transform(self, mask):
Hang Zhang's avatar
Hang Zhang committed
99
100
        target = np.array(mask).astype('int64') - 1
        return torch.from_numpy(target)
Zhang's avatar
v0.4.2  
Zhang committed
101
102
103
104
105
106
107
108
109
110

    def __len__(self):
        return len(self.images)

    @property
    def pred_offset(self):
        return 1


def _get_ade20k_pairs(folder, split='train'):
Hang Zhang's avatar
Hang Zhang committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def get_path_pairs(img_folder, mask_folder):
        img_paths = []
        mask_paths = []
        for filename in os.listdir(img_folder):
            basename, _ = os.path.splitext(filename)
            if filename.endswith(".jpg"):
                imgpath = os.path.join(img_folder, filename)
                maskname = basename + '.png'
                maskpath = os.path.join(mask_folder, maskname)
                if os.path.isfile(maskpath):
                    img_paths.append(imgpath)
                    mask_paths.append(maskpath)
                else:
                    print('cannot find the mask:', maskpath)
        return img_paths, mask_paths

Zhang's avatar
v0.4.2  
Zhang committed
127
128
129
    if split == 'train':
        img_folder = os.path.join(folder, 'images/training')
        mask_folder = os.path.join(folder, 'annotations/training')
Hang Zhang's avatar
Hang Zhang committed
130
        img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)
Hang Zhang's avatar
Hang Zhang committed
131
132
        print('len(img_paths):', len(img_paths))
        assert len(img_paths) == 20210
Hang Zhang's avatar
Hang Zhang committed
133
    elif split == 'val':
Zhang's avatar
v0.4.2  
Zhang committed
134
135
        img_folder = os.path.join(folder, 'images/validation')
        mask_folder = os.path.join(folder, 'annotations/validation')
Hang Zhang's avatar
Hang Zhang committed
136
        img_paths, mask_paths = get_path_pairs(img_folder, mask_folder)
Hang Zhang's avatar
Hang Zhang committed
137
        assert len(img_paths) == 2000
Hang Zhang's avatar
Hang Zhang committed
138
    else:
Hang Zhang's avatar
Hang Zhang committed
139
        assert split == 'trainval'
Hang Zhang's avatar
Hang Zhang committed
140
141
142
143
144
145
        train_img_folder = os.path.join(folder, 'images/training')
        train_mask_folder = os.path.join(folder, 'annotations/training')
        val_img_folder = os.path.join(folder, 'images/validation')
        val_mask_folder = os.path.join(folder, 'annotations/validation')
        train_img_paths, train_mask_paths = get_path_pairs(train_img_folder, train_mask_folder)
        val_img_paths, val_mask_paths = get_path_pairs(val_img_folder, val_mask_folder)
Hang Zhang's avatar
Hang Zhang committed
146
147
148
        img_paths = train_img_paths + val_img_paths
        mask_paths = train_mask_paths + val_mask_paths
        assert len(img_paths) == 22210
Zhang's avatar
v0.4.2  
Zhang committed
149
    return img_paths, mask_paths