ade20k.py 3.44 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
###########################################################################
# Created by: Hang Zhang
# Email: zhang.hang@rutgers.edu
# Copyright (c) 2017
###########################################################################

import os
import sys
import numpy as np
import random
import math
from PIL import Image, ImageOps, ImageFilter

import torch
import torch.utils.data as data
import torchvision.transforms as transform

from .base import BaseDataset

class ADE20KSegmentation(BaseDataset):
    BASE_DIR = 'ADEChallengeData2016'
    NUM_CLASS = 150
    def __init__(self, root=os.path.expanduser('~/.encoding/data'), split='train',
                 mode=None, transform=None, target_transform=None):
        super(ADE20KSegmentation, self).__init__(
            root, split, mode, transform, target_transform)
        # assert exists and prepare dataset automatically
        root = os.path.join(root, self.BASE_DIR)
        assert os.path.exists(root), "Please setup the dataset using" + \
            "encoding/scripts/prepare_ade20k.py"
        self.images, self.masks = _get_ade20k_pairs(root, split)
        if split != 'test':
            assert (len(self.images) == len(self.masks))
        if len(self.images) == 0:
            raise(RuntimeError("Found 0 images in subfolders of: \
                " + root + "\n"))

    def __getitem__(self, index):
        img = Image.open(self.images[index]).convert('RGB')
        if self.mode == 'test':
            if self.transform is not None:
                img = self.transform(img)
            return img, os.path.basename(self.images[index])
        mask = Image.open(self.masks[index])
        # synchrosized transform
        if self.mode == 'train':
            img, mask = self._sync_transform(img, mask)
        elif self.mode == 'val':
            img, mask = self._val_sync_transform(img, mask)
        else:
            assert self.mode == 'testval'
            mask = self._mask_transform(mask)
        # general resize, normalize and toTensor
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            mask = self.target_transform(mask)
        return img, mask

    def _mask_transform(self, mask):
        target = np.array(mask).astype('int32') - 1
        return torch.from_numpy(target).long()

    def __len__(self):
        return len(self.images)

    @property
    def pred_offset(self):
        return 1


def _get_ade20k_pairs(folder, split='train'):
    img_paths = []
    mask_paths = []
    if split == 'train':
        img_folder = os.path.join(folder, 'images/training')
        mask_folder = os.path.join(folder, 'annotations/training')
Hang Zhang's avatar
Hang Zhang committed
78
    elif split == 'val':
Zhang's avatar
v0.4.2  
Zhang committed
79
80
        img_folder = os.path.join(folder, 'images/validation')
        mask_folder = os.path.join(folder, 'annotations/validation')
Hang Zhang's avatar
Hang Zhang committed
81
82
83
    else:
        img_folder = os.path.join(folder, 'images/trainval')
        mask_folder = os.path.join(folder, 'annotations/trainval')
Zhang's avatar
v0.4.2  
Zhang committed
84
85
86
87
88
89
90
91
92
93
94
95
96
    for filename in os.listdir(img_folder):
        basename, _ = os.path.splitext(filename)
        if filename.endswith(".jpg"):
            imgpath = os.path.join(img_folder, filename)
            maskname = basename + '.png'
            maskpath = os.path.join(mask_folder, maskname)
            if os.path.isfile(maskpath):
                img_paths.append(imgpath)
                mask_paths.append(maskpath)
            else:
                print('cannot find the mask:', maskpath)

    return img_paths, mask_paths