option.py 5.58 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
import argparse
import torch

class Options():
    def __init__(self):
        parser = argparse.ArgumentParser(description='PyTorch \
            Segmentation')
        # model and dataset 
        parser.add_argument('--model', type=str, default='encnet',
                            help='model name (default: encnet)')
        parser.add_argument('--backbone', type=str, default='resnet50',
                            help='backbone name (default: resnet50)')
        parser.add_argument('--dataset', type=str, default='ade20k',
                            help='dataset name (default: pascal12)')
        parser.add_argument('--data-folder', type=str,
                            default=os.path.join(os.environ['HOME'], 'data'),
                            help='training dataset folder (default: \
                            $(HOME)/data)')
Hang Zhang's avatar
Hang Zhang committed
26
        parser.add_argument('--workers', type=int, default=16,
Hang Zhang's avatar
Hang Zhang committed
27
                            metavar='N', help='dataloader threads')
Hang Zhang's avatar
Hang Zhang committed
28
29
30
31
        parser.add_argument('--base-size', type=int, default=608,
                            help='base image size')
        parser.add_argument('--crop-size', type=int, default=576,
                            help='crop image size')
Hang Zhang's avatar
Hang Zhang committed
32
33
34
35
36
37
38
39
40
41
42
43
        # training hyper params
        parser.add_argument('--aux', action='store_true', default= False,
                            help='Auxilary Loss')
        parser.add_argument('--se-loss', action='store_true', default= False,
                            help='Semantic Encoding Loss SE-loss')
        parser.add_argument('--epochs', type=int, default=None, metavar='N',
                            help='number of epochs to train (default: auto)')
        parser.add_argument('--start_epoch', type=int, default=0,
                            metavar='N', help='start epochs (default:0)')
        parser.add_argument('--batch-size', type=int, default=None,
                            metavar='N', help='input batch size for \
                            training (default: auto)')
Hang Zhang's avatar
Hang Zhang committed
44
        parser.add_argument('--test-batch-size', type=int, default=None,
Hang Zhang's avatar
Hang Zhang committed
45
                            metavar='N', help='input batch size for \
Hang Zhang's avatar
Hang Zhang committed
46
                            testing (default: same as batch size)')
Hang Zhang's avatar
Hang Zhang committed
47
        # optimizer params
Hang Zhang's avatar
Hang Zhang committed
48
49
        parser.add_argument('--lr', type=float, default=None, metavar='LR',
                            help='learning rate (default: auto)')
Hang Zhang's avatar
Hang Zhang committed
50
        parser.add_argument('--lr-scheduler', type=str, default='poly',
Hang Zhang's avatar
Hang Zhang committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
                            help='learning rate scheduler (default: poly)')
        parser.add_argument('--momentum', type=float, default=0.9,
                            metavar='M', help='momentum (default: 0.9)')
        parser.add_argument('--weight-decay', type=float, default=1e-4,
                            metavar='M', help='w-decay (default: 1e-4)')
        # cuda, seed and logging
        parser.add_argument('--no-cuda', action='store_true', default=
                            False, help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--checkname', type=str, default='default',
                            help='set the checkpoint name')
        parser.add_argument('--model-zoo', type=str, default=None,
                            help='evaluating on model zoo model')
        # finetuning pre-trained models
        parser.add_argument('--ft', action='store_true', default= False,
                            help='finetuning on a different dataset')
        parser.add_argument('--pre-class', type=int, default=None,
                            help='num of pre-trained classes \
                            (default: None)')
        # evaluation option
Hang Zhang's avatar
Hang Zhang committed
75
76
        parser.add_argument('--ema', action='store_true', default= False,
                            help='using EMA evaluation')
Hang Zhang's avatar
Hang Zhang committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        parser.add_argument('--eval', action='store_true', default= False,
                            help='evaluating mIoU')
        parser.add_argument('--no-val', action='store_true', default= False,
                            help='skip validation during training')
        # test option
        parser.add_argument('--test-folder', type=str, default=None,
                            help='path to test image folder')
        # the parser
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        args.cuda = not args.no_cuda and torch.cuda.is_available()
        # default settings for epochs, batch_size and lr
        if args.epochs is None:
            epoches = {
                'pascal_voc': 50,
                'pascal_aug': 50,
Hang Zhang's avatar
Hang Zhang committed
95
                'pcontext': 80,
Hang Zhang's avatar
Hang Zhang committed
96
                'ade20k': 160,
Hang Zhang's avatar
Hang Zhang committed
97
98
99
100
            }
            args.epochs = epoches[args.dataset.lower()]
        if args.batch_size is None:
            args.batch_size = 4 * torch.cuda.device_count()
Hang Zhang's avatar
Hang Zhang committed
101
102
        if args.test_batch_size is None:
            args.test_batch_size = args.batch_size
Hang Zhang's avatar
Hang Zhang committed
103
104
105
106
107
108
109
110
111
        if args.lr is None:
            lrs = {
                'pascal_voc': 0.0001,
                'pascal_aug': 0.001,
                'pcontext': 0.001,
                'ade20k': 0.01,
            }
            args.lr = lrs[args.dataset.lower()] / 16 * args.batch_size
        return args