aggregate.py 9.81 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable
from .._ext import encoding_lib


class aggregate(Function):
    r"""
    Aggregate operation, aggregate the residuals of inputs (:math:`X`) with repect to the codewords (:math:`C`) with assignment weights (:math:`A`).
    

    .. math::
        e_{k} = \sum_{i=1}^{N} a_{ik} (x_i - d_k)

    Shape:
        - Input: :math:`A\in\mathcal{R}^{B\times N\times K}` :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}`  (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`

Hang Zhang's avatar
Hang Zhang committed
31
32
33
34
35
36
37
38
    Examples:
        >>> B,N,K,D = 2,3,4,5
        >>> A = Variable(torch.cuda.DoubleTensor(B,N,K).uniform_(-0.5,0.5), requires_grad=True)
        >>> X = Variable(torch.cuda.DoubleTensor(B,N,D).uniform_(-0.5,0.5), requires_grad=True)
        >>> C = Variable(torch.cuda.DoubleTensor(K,D).uniform_(-0.5,0.5), requires_grad=True)
        >>> func = encoding.aggregate()
        >>> E = func(A, X, C)

Hang Zhang's avatar
Hang Zhang committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    """
    def forward(self, A, X, C):
        # A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD)
        self.save_for_backward(A, X, C)
        B, N, K = A.size()
        D = X.size(2)
        with torch.cuda.device_of(A):
            E = A.new(B,K,D)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregateE_forward(E, A, X, C)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregateE_forward(E, A, X, C)
        else:
            raise RuntimeError('Unimplemented data type!')
        return E

    def backward(self, gradE):
        A, X, C = self.saved_tensors
        with torch.cuda.device_of(A):
            gradA = A.new().resize_as_(A)
            gradX = A.new().resize_as_(X)
            gradC = A.new().resize_as_(C)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregateE_backward(gradA, 
                    gradE, A, X, C)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregateE_backward(gradA, 
                    gradE, A, X, C)
        else:
            raise RuntimeError('Unimplemented data type!')
        gradX.copy_(torch.bmm(A, gradE))
        gradC.copy_((-gradE*A.sum(1).unsqueeze(2)).sum(0))
        return gradA, gradX, gradC


Hang Zhang's avatar
Hang Zhang committed
78
79
80
81
82
83
84
85
86
87
88
89
class scaledL2(Function):
    r"""
    scaledL2 distance

    .. math::
        sl_{ik} = s_k \|x_i-c_k\|^2

    Shape:
        - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}` :math:`S\in \mathcal{R}^K` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times N\times K}`

    """
Hang Zhang's avatar
Hang Zhang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def forward(self, X, C, S):
        B,N,D = X.size()
        K = C.size(0)
        with torch.cuda.device_of(X):
            SL = X.new(B,N,K)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_scaledl2_forward(SL, X, C, S)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_scaledl2_forward(SL, X, C, S)
        else:
            raise RuntimeError('Unimplemented data type!')
        self.save_for_backward(X, C, S, SL)
        return SL
    def backward(self, gradSL):
        X, C, S, SL = self.saved_tensors
        K = C.size(0)
        with torch.cuda.device_of(X):
            gradX = X.new().resize_as_(X)
            gradC = X.new().resize_as_(C)
            gradS = X.new().resize_as_(S)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_scaledl2_backward(gradSL, 
                    gradX, gradC, X, C, S)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_scaledl2_backward(gradSL, 
                    gradX, gradC, X, C, S)
        else:
            raise RuntimeError('Unimplemented data type!')
        gradS.copy_((gradSL*(SL/S.view(1,1,K))).sum(0).sum(0))
        return gradX, gradC, gradS


class aggregateP(Function):
    def forward(self, A, R):
        # A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD)
        self.save_for_backward(A, R)
        B, N, K, D = R.size()
        with torch.cuda.device_of(A):
            E = A.new(B,K,D)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregate_forward(E, A, R)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregate_forward(E, A, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        return E

    def backward(self, gradE):
        A, R = self.saved_tensors
        with torch.cuda.device_of(A):
            gradA = A.new().resize_as_(A)
            gradR = R.new().resize_as_(R)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregate_backward(gradA, 
                    gradR, gradE, A, R)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregate_backward(gradA, 
                    gradR, gradE, A, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradA, gradR


class residual(Function):
Hang Zhang's avatar
Hang Zhang committed
162
163
164
165
166
167
168
169
170
171
172
    r"""
    Calculate residuals over a mini-batch
    
    .. math::
        r_{ik} = x_i - c_k

    Shape:
        - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`R\in\mathcal{R}^{B\times N\times K\times D}`

    """
Hang Zhang's avatar
Hang Zhang committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def forward(self, X, C):
        # X \in(BxNxD) D \in(KxD) R \in(BxNxKxD) 
        B, N, D = X.size()
        K = C.size(0)
        with torch.cuda.device_of(X):
            R = X.new(B,N,K,D)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_residual_forward(R, X, C)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_residual_forward(R, X, C)
        else:
            raise RuntimeError('Unimplemented data type!')
        return R

    def backward(self, gradR):
        B, N, K, D = gradR.size()
        with torch.cuda.device_of(gradR):
            gradX = gradR.new(B,N,D)
            gradD = gradR.new(K,D)
        if isinstance(gradR, torch.cuda.FloatTensor):
            with torch.cuda.device_of(gradR):
                encoding_lib.Encoding_Float_residual_backward(gradR, 
                    gradX, gradD)
        elif isinstance(gradR, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(gradR):
                encoding_lib.Encoding_Double_residual_backward(gradR, 
                    gradX, gradD)
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradX, gradD


class square_squeeze(Function):
    def forward(self, R):
        B, N, K, D = R.size()
        with torch.cuda.device_of(R):
            L = R.new(B,N,K)
        if isinstance(R, torch.cuda.FloatTensor):
            with torch.cuda.device_of(R):
                encoding_lib.Encoding_Float_squaresqueeze_forward(L, R)
        elif isinstance(R, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(R):
                encoding_lib.Encoding_Double_squaresqueeze_forward(L, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        self.save_for_backward(L, R)
        return L

    def backward(self, gradL):
        L, R = self.saved_tensors
        B, N, K, D = R.size()
        with torch.cuda.device_of(R):
            gradR = R.new(B,N,K,D)
        if isinstance(R, torch.cuda.FloatTensor):
            with torch.cuda.device_of(gradL):
                encoding_lib.Encoding_Float_squaresqueeze_backward(gradL, 
                    gradR, R)
        elif isinstance(R, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(gradL):
                encoding_lib.Encoding_Double_squaresqueeze_backward(gradL, 
                    gradR, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradR
    

def assign(R, S):
Hang Zhang's avatar
Hang Zhang committed
242
243
244
245
    r"""
    Calculate assignment weights for given residuals (:math:`R`) and scale (:math:`S`)

    .. math::
Hang Zhang's avatar
docs  
Hang Zhang committed
246
        a_{ik} = \frac{exp(-s_k\|r_{ik}\|^2)}{\sum_{j=1}^K exp(-s_j\|r_{ik}\|^2)}
Hang Zhang's avatar
Hang Zhang committed
247
248
249
250
251
252

    Shape:
        - Input: :math:`R\in\mathcal{R}^{B\times N\times K\times D}` :math:`S\in \mathcal{R}^K` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output :math:`A\in\mathcal{R}^{B\times N\times K}`

    """
Hang Zhang's avatar
Hang Zhang committed
253
254
255
256
    L = square_squeeze()(R)
    K = S.size(0)
    SL = L * S.view(1,1,K)
    return F.softmax(SL)