aggregate.py 8.11 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable
from .._ext import encoding_lib


class aggregate(Function):
    r"""
    Aggregate operation, aggregate the residuals of inputs (:math:`X`) with repect to the codewords (:math:`C`) with assignment weights (:math:`A`).
    

    .. math::
        e_{k} = \sum_{i=1}^{N} a_{ik} (x_i - d_k)

    Shape:
        - Input: :math:`A\in\mathcal{R}^{B\times N\times K}` :math:`X\in\mathcal{R}^{B\times N\times D}` :math:`C\in\mathcal{R}^{K\times D}`  (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`

    """
    def forward(self, A, X, C):
        # A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD)
        self.save_for_backward(A, X, C)
        B, N, K = A.size()
        D = X.size(2)
        with torch.cuda.device_of(A):
            E = A.new(B,K,D)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregateE_forward(E, A, X, C)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregateE_forward(E, A, X, C)
        else:
            raise RuntimeError('Unimplemented data type!')
        return E

    def backward(self, gradE):
        A, X, C = self.saved_tensors
        with torch.cuda.device_of(A):
            gradA = A.new().resize_as_(A)
            gradX = A.new().resize_as_(X)
            gradC = A.new().resize_as_(C)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregateE_backward(gradA, 
                    gradE, A, X, C)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregateE_backward(gradA, 
                    gradE, A, X, C)
        else:
            raise RuntimeError('Unimplemented data type!')
        gradX.copy_(torch.bmm(A, gradE))
        gradC.copy_((-gradE*A.sum(1).unsqueeze(2)).sum(0))
        return gradA, gradX, gradC


class ScaledL2(Function):
    def forward(self, X, C, S):
        B,N,D = X.size()
        K = C.size(0)
        with torch.cuda.device_of(X):
            SL = X.new(B,N,K)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_scaledl2_forward(SL, X, C, S)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_scaledl2_forward(SL, X, C, S)
        else:
            raise RuntimeError('Unimplemented data type!')
        self.save_for_backward(X, C, S, SL)
        return SL
    def backward(self, gradSL):
        X, C, S, SL = self.saved_tensors
        K = C.size(0)
        with torch.cuda.device_of(X):
            gradX = X.new().resize_as_(X)
            gradC = X.new().resize_as_(C)
            gradS = X.new().resize_as_(S)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_scaledl2_backward(gradSL, 
                    gradX, gradC, X, C, S)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_scaledl2_backward(gradSL, 
                    gradX, gradC, X, C, S)
        else:
            raise RuntimeError('Unimplemented data type!')
        gradS.copy_((gradSL*(SL/S.view(1,1,K))).sum(0).sum(0))
        return gradX, gradC, gradS


class aggregateP(Function):
    def forward(self, A, R):
        # A \in(BxNxK) R \in(BxNxKxD) => E \in(BxNxD)
        self.save_for_backward(A, R)
        B, N, K, D = R.size()
        with torch.cuda.device_of(A):
            E = A.new(B,K,D)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregate_forward(E, A, R)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregate_forward(E, A, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        return E

    def backward(self, gradE):
        A, R = self.saved_tensors
        with torch.cuda.device_of(A):
            gradA = A.new().resize_as_(A)
            gradR = R.new().resize_as_(R)
        if isinstance(A, torch.cuda.FloatTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Float_aggregate_backward(gradA, 
                    gradR, gradE, A, R)
        elif isinstance(A, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(A):
                encoding_lib.Encoding_Double_aggregate_backward(gradA, 
                    gradR, gradE, A, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradA, gradR


class residual(Function):
    def forward(self, X, C):
        # X \in(BxNxD) D \in(KxD) R \in(BxNxKxD) 
        B, N, D = X.size()
        K = C.size(0)
        with torch.cuda.device_of(X):
            R = X.new(B,N,K,D)
        if isinstance(X, torch.cuda.FloatTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Float_residual_forward(R, X, C)
        elif isinstance(X, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(X):
                encoding_lib.Encoding_Double_residual_forward(R, X, C)
        else:
            raise RuntimeError('Unimplemented data type!')
        return R

    def backward(self, gradR):
        B, N, K, D = gradR.size()
        with torch.cuda.device_of(gradR):
            gradX = gradR.new(B,N,D)
            gradD = gradR.new(K,D)
        if isinstance(gradR, torch.cuda.FloatTensor):
            with torch.cuda.device_of(gradR):
                encoding_lib.Encoding_Float_residual_backward(gradR, 
                    gradX, gradD)
        elif isinstance(gradR, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(gradR):
                encoding_lib.Encoding_Double_residual_backward(gradR, 
                    gradX, gradD)
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradX, gradD


class square_squeeze(Function):
    def forward(self, R):
        B, N, K, D = R.size()
        with torch.cuda.device_of(R):
            L = R.new(B,N,K)
        if isinstance(R, torch.cuda.FloatTensor):
            with torch.cuda.device_of(R):
                encoding_lib.Encoding_Float_squaresqueeze_forward(L, R)
        elif isinstance(R, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(R):
                encoding_lib.Encoding_Double_squaresqueeze_forward(L, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        self.save_for_backward(L, R)
        return L

    def backward(self, gradL):
        L, R = self.saved_tensors
        B, N, K, D = R.size()
        with torch.cuda.device_of(R):
            gradR = R.new(B,N,K,D)
        if isinstance(R, torch.cuda.FloatTensor):
            with torch.cuda.device_of(gradL):
                encoding_lib.Encoding_Float_squaresqueeze_backward(gradL, 
                    gradR, R)
        elif isinstance(R, torch.cuda.DoubleTensor):
            with torch.cuda.device_of(gradL):
                encoding_lib.Encoding_Double_squaresqueeze_backward(gradL, 
                    gradR, R)
        else:
            raise RuntimeError('Unimplemented data type!')
        return gradR
    

def assign(R, S):
    L = square_squeeze()(R)
    K = S.size(0)
    SL = L * S.view(1,1,K)
    return F.softmax(SL)