utils.py 15.2 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
Hang Zhang's avatar
sync BN  
Hang Zhang committed
8
## LICENSE file in the root directory of this source tree
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
sync BN  
Hang Zhang committed
11
"""Encoding Util Tools"""
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
12
import os
Zhang's avatar
Zhang committed
13
14
15
16
import errno
import requests
import shutil
import hashlib
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
17
import math
Zhang's avatar
Zhang committed
18
19
from tqdm import tqdm
import numpy as np
Hang Zhang's avatar
sync BN  
Hang Zhang committed
20
import torch
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
21

Zhang's avatar
Zhang committed
22
23
__all__ = ['LR_Scheduler', 'save_checkpoint', 'batch_pix_accuracy',
           'batch_intersection_union', 'download', 'mkdir', 'check_sha1']
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
24
25


Hang Zhang's avatar
path  
Hang Zhang committed
26
27
28
29
class LR_Scheduler(object):
    """Learning Rate Scheduler

    Step mode: ``lr = baselr * 0.1 ^ {floor(epoch-1 / lr_step)}``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
30

Hang Zhang's avatar
path  
Hang Zhang committed
31
32
33
    Cosine mode: ``lr = baselr * 0.5 * (1 + cos(iter/maxiter))``

    Poly mode: ``lr = baselr * (1 - iter/maxiter) ^ 0.9``
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
34
35

    Args:
Hang Zhang's avatar
sync BN  
Hang Zhang committed
36
37
38
        args:  :attr:`args.lr_scheduler` lr scheduler mode (`cos`, `poly`),
          :attr:`args.lr` base learning rate, :attr:`args.epochs` number of epochs,
          :attr:`args.lr_step`
Hang Zhang's avatar
path  
Hang Zhang committed
39

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
40
41
        niters: number of iterations per epoch
    """
Hang Zhang's avatar
path  
Hang Zhang committed
42
    def __init__(self, args, niters=0):
Hang Zhang's avatar
sync BN  
Hang Zhang committed
43
        self.mode = args.lr_scheduler
Hang Zhang's avatar
path  
Hang Zhang committed
44
        print('Using {} LR Scheduler!'.format(self.mode))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
45
        self.lr = args.lr
Hang Zhang's avatar
path  
Hang Zhang committed
46
47
48
49
50
        if self.mode == 'step':
            self.lr_step = args.lr_step
        else:
            self.niters = niters
            self.N = args.epochs * niters
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
51
52
        self.epoch = -1

Hang Zhang's avatar
Hang Zhang committed
53
    def __call__(self, optimizer, i, epoch, best_pred):
Hang Zhang's avatar
path  
Hang Zhang committed
54
55
56
57
58
59
60
61
62
63
        if self.mode == 'cos':
            T = (epoch - 1) * self.niters + i
            lr = 0.5 * self.lr * (1 + math.cos(1.0 * T / self.N * math.pi))
        elif self.mode == 'poly':
            T = (epoch - 1) * self.niters + i
            lr = self.lr * pow((1 - 1.0 * T / self.N), 0.9)
        elif self.mode == 'step':
            lr = self.lr * (0.1 ** ((epoch - 1) // self.lr_step))
        else:
            raise RuntimeError('Unknown LR scheduler!')
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
64
        if epoch > self.epoch:
Hang Zhang's avatar
Hang Zhang committed
65
            print('\n=>Epoches %i, learning rate = %.4f, \
Hang Zhang's avatar
sync BN  
Hang Zhang committed
66
                previous best = %.4f' % (epoch, lr, best_pred))
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
67
68
69
70
71
72
            self.epoch = epoch
        self._adjust_learning_rate(optimizer, lr)

    def _adjust_learning_rate(self, optimizer, lr):
        if len(optimizer.param_groups) == 1:
            optimizer.param_groups[0]['lr'] = lr
Hang Zhang's avatar
path  
Hang Zhang committed
73
        else:
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
74
75
            # enlarge the lr at the head
            optimizer.param_groups[0]['lr'] = lr
Hang Zhang's avatar
sync BN  
Hang Zhang committed
76
            for i in range(1, len(optimizer.param_groups)):
Hang Zhang's avatar
path  
Hang Zhang committed
77
                optimizer.param_groups[i]['lr'] = lr * 10
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
78
79
80
81
82
83
84
85
86
87
88
89


# refer to https://github.com/xternalz/WideResNet-pytorch
def save_checkpoint(state, args, is_best, filename='checkpoint.pth.tar'):
    """Saves checkpoint to disk"""
    directory = "runs/%s/%s/%s/"%(args.dataset, args.model, args.checkname)
    if not os.path.exists(directory):
        os.makedirs(directory)
    filename = directory + filename
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, directory + 'model_best.pth.tar')
Zhang's avatar
Zhang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331


def batch_pix_accuracy(predict, target):
    """Batch Pixel Accuracy
    Args:
        predict: input 4D tensor
        target: label 3D tensor
    """
    _, predict = torch.max(predict, 1)
    # pixel_labeled = (target >= 0).sum().item()
    # TODO currently torch.eq is not working as expected, change back when it's fixed
    # pixel_correct = torch.eq(predict, target).sum().item()
    predict = predict.cpu().numpy()
    target = target.cpu().numpy()
    pixel_labeled = np.sum(target >= 0)
    pixel_correct = np.sum((predict == target)*(target >= 0))
    assert(pixel_correct <= pixel_labeled)
    return pixel_correct, pixel_labeled


def batch_intersection_union(predict, target, nclass):
    """Batch Intersection of Union
    Args:
        predict: input 4D tensor
        target: label 3D tensor
        nclass: number of categories (int)
    """
    _, predict = torch.max(predict, 1)
    mini = 0
    maxi = nclass - 1
    nbins = nclass
    """
    predict = predict.cpu().numpy()
    target = target.cpu().numpy()
    predict = predict * (target >= 0).astype(predict.dtype)
    intersection = predict * (predict == target)
    # areas of intersection and union
    area_inter, _ = np.histogram(intersection, bins=nbins,
                                 range=(mini, maxi))
    area_pred, _ = np.histogram(predict, bins=nbins,
                                range=(mini, maxi))
    area_lab, _ = np.histogram(target, bins=nbins,
                               range=(mini, maxi))
    area_union = area_pred + area_lab - area_inter
    # Somehow PyTorch update break this, will change back if fixed
    """
    predict = predict * (target >= 0).type_as(predict)
    intersection = predict * (predict == target).type_as(predict)
    area_inter = torch.histc(intersection.cpu().float(), bins=nclass, 
                                    min=mini, max=maxi) 
    area_pred = torch.histc(predict.cpu().float(), bins=nclass, min=mini, 
                            max=maxi)
    area_lab = torch.histc(target.cpu().float(), bins=nclass, min=mini, 
                           max=maxi)
    area_union = area_pred + area_lab - area_inter
    return area_inter, area_union


def get_selabel_vector(target, nclass):
    """Get SE-Loss Label in a batch
    Args:
        predict: input 4D tensor
        target: label 3D tensor (BxHxW)
        nclass: number of categories (int)
    Output:
        2D tensor (BxnClass)
    """
    batch = target.size(0)
    tvect = torch.zeros(batch, nclass)
    for i in range(batch):
        hist = torch.histc(target[i].data.float(), 
                           bins=nclass, min=0,
                           max=nclass-1)
        vect = hist>0
        tvect[i] = vect
    return tvect


def get_mask_pallete(npimg, dataset='detail'):
    """Get image color pallete for visualizing masks"""
    # recovery boundary
    if dataset == 'pascal_voc':
        npimg[npimg==21] = 255
    # put colormap
    out_img = Image.fromarray(npimg.astype('uint8'))
    if dataset == 'ade20k':
        out_img.putpalette(adepallete)
    elif dataset == 'cityscapes':
        out_img.putpalette(citypallete)
    else:
        out_img.putpalette(vocpallete)
    return out_img


def download(url, path=None, overwrite=False, sha1_hash=None):
    """Download an given URL
    Parameters
    ----------
    url : str
        URL to download
    path : str, optional
        Destination path to store downloaded file. By default stores to the
        current directory with same name as in url.
    overwrite : bool, optional
        Whether to overwrite destination file if already exists.
    sha1_hash : str, optional
        Expected sha1 hash in hexadecimal digits. Will ignore existing file when hash is specified
        but doesn't match.
    Returns
    -------
    str
        The file path of the downloaded file.
    """
    if path is None:
        fname = url.split('/')[-1]
    else:
        path = os.path.expanduser(path)
        if os.path.isdir(path):
            fname = os.path.join(path, url.split('/')[-1])
        else:
            fname = path

    if overwrite or not os.path.exists(fname) or (sha1_hash and not check_sha1(fname, sha1_hash)):
        dirname = os.path.dirname(os.path.abspath(os.path.expanduser(fname)))
        if not os.path.exists(dirname):
            os.makedirs(dirname)

        print('Downloading %s from %s...'%(fname, url))
        r = requests.get(url, stream=True)
        if r.status_code != 200:
            raise RuntimeError("Failed downloading url %s"%url)
        total_length = r.headers.get('content-length')
        with open(fname, 'wb') as f:
            if total_length is None: # no content length header
                for chunk in r.iter_content(chunk_size=1024):
                    if chunk: # filter out keep-alive new chunks
                        f.write(chunk)
            else:
                total_length = int(total_length)
                for chunk in tqdm(r.iter_content(chunk_size=1024),
                                  total=int(total_length / 1024. + 0.5),
                                  unit='KB', unit_scale=False, dynamic_ncols=True):
                    f.write(chunk)

        if sha1_hash and not check_sha1(fname, sha1_hash):
            raise UserWarning('File {} is downloaded but the content hash does not match. ' \
                              'The repo may be outdated or download may be incomplete. ' \
                              'If the "repo_url" is overridden, consider switching to ' \
                              'the default repo.'.format(fname))

    return fname


def check_sha1(filename, sha1_hash):
    """Check whether the sha1 hash of the file content matches the expected hash.
    Parameters
    ----------
    filename : str
        Path to the file.
    sha1_hash : str
        Expected sha1 hash in hexadecimal digits.
    Returns
    -------
    bool
        Whether the file content matches the expected hash.
    """
    sha1 = hashlib.sha1()
    with open(filename, 'rb') as f:
        while True:
            data = f.read(1048576)
            if not data:
                break
            sha1.update(data)

    return sha1.hexdigest() == sha1_hash


def mkdir(path):
    """make dir exists okay"""
    try:
        os.makedirs(path)
    except OSError as exc:  # Python >2.5
        if exc.errno == errno.EEXIST and os.path.isdir(path):
            pass
        else:
            raise


# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
def pixel_accuracy(im_pred, im_lab):
    im_pred = np.asarray(im_pred)
    im_lab = np.asarray(im_lab)

    # Remove classes from unlabeled pixels in gt image. 
    # We should not penalize detections in unlabeled portions of the image.
    pixel_labeled = np.sum(im_lab > 0)
    pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
    #pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
    return pixel_correct, pixel_labeled


def intersection_and_union(im_pred, im_lab, num_class):
    im_pred = np.asarray(im_pred)
    im_lab = np.asarray(im_lab)
    # Remove classes from unlabeled pixels in gt image. 
    im_pred = im_pred * (im_lab > 0)
    # Compute area intersection:
    intersection = im_pred * (im_pred == im_lab)
    area_inter, _ = np.histogram(intersection, bins=num_class-1,
                                        range=(1, num_class - 1))
    # Compute area union: 
    area_pred, _ = np.histogram(im_pred, bins=num_class-1,
                                range=(1, num_class - 1))
    area_lab, _ = np.histogram(im_lab, bins=num_class-1,
                               range=(1, num_class - 1))
    area_union = area_pred + area_lab - area_inter
    return area_inter, area_union


def _get_voc_pallete(num_cls):
    n = num_cls
    pallete = [0]*(n*3)
    for j in range(0,n):
            lab = j
            pallete[j*3+0] = 0
            pallete[j*3+1] = 0
            pallete[j*3+2] = 0
            i = 0
            while (lab > 0):
                    pallete[j*3+0] |= (((lab >> 0) & 1) << (7-i))
                    pallete[j*3+1] |= (((lab >> 1) & 1) << (7-i))
                    pallete[j*3+2] |= (((lab >> 2) & 1) << (7-i))
                    i = i + 1
                    lab >>= 3
    return pallete

vocpallete = _get_voc_pallete(256)

adepallete = [0,0,0,120,120,120,180,120,120,6,230,230,80,50,50,4,200,3,120,120,80,140,140,140,204,5,255,230,230,230,4,250,7,224,5,255,235,255,7,150,5,61,120,120,70,8,255,51,255,6,82,143,255,140,204,255,4,255,51,7,204,70,3,0,102,200,61,230,250,255,6,51,11,102,255,255,7,71,255,9,224,9,7,230,220,220,220,255,9,92,112,9,255,8,255,214,7,255,224,255,184,6,10,255,71,255,41,10,7,255,255,224,255,8,102,8,255,255,61,6,255,194,7,255,122,8,0,255,20,255,8,41,255,5,153,6,51,255,235,12,255,160,150,20,0,163,255,140,140,140,250,10,15,20,255,0,31,255,0,255,31,0,255,224,0,153,255,0,0,0,255,255,71,0,0,235,255,0,173,255,31,0,255,11,200,200,255,82,0,0,255,245,0,61,255,0,255,112,0,255,133,255,0,0,255,163,0,255,102,0,194,255,0,0,143,255,51,255,0,0,82,255,0,255,41,0,255,173,10,0,255,173,255,0,0,255,153,255,92,0,255,0,255,255,0,245,255,0,102,255,173,0,255,0,20,255,184,184,0,31,255,0,255,61,0,71,255,255,0,204,0,255,194,0,255,82,0,10,255,0,112,255,51,0,255,0,194,255,0,122,255,0,255,163,255,153,0,0,255,10,255,112,0,143,255,0,82,0,255,163,255,0,255,235,0,8,184,170,133,0,255,0,255,92,184,0,255,255,0,31,0,184,255,0,214,255,255,0,112,92,255,0,0,224,255,112,224,255,70,184,160,163,0,255,153,0,255,71,255,0,255,0,163,255,204,0,255,0,143,0,255,235,133,255,0,255,0,235,245,0,255,255,0,122,255,245,0,10,190,212,214,255,0,0,204,255,20,0,255,255,255,0,0,153,255,0,41,255,0,255,204,41,0,255,41,255,0,173,0,255,0,245,255,71,0,255,122,0,255,0,255,184,0,92,255,184,255,0,0,133,255,255,214,0,25,194,194,102,255,0,92,0,255]

citypallete = [
128,64,128,244,35,232,70,70,70,102,102,156,190,153,153,153,153,153,250,170,30,220,220,0,107,142,35,152,251,152,70,130,180,220,20,60,255,0,0,0,0,142,0,0,70,0,60,100,0,80,100,0,0,230,119,11,32,128,192,0,0,64,128,128,64,128,0,192,128,128,192,128,64,64,0,192,64,0,64,192,0,192,192,0,64,64,128,192,64,128,64,192,128,192,192,128,0,0,64,128,0,64,0,128,64,128,128,64,0,0,192,128,0,192,0,128,192,128,128,192,64,0,64,192,0,64,64,128,64,192,128,64,64,0,192,192,0,192,64,128,192,192,128,192,0,64,64,128,64,64,0,192,64,128,192,64,0,64,192,128,64,192,0,192,192,128,192,192,64,64,64,192,64,64,64,192,64,192,192,64,64,64,192,192,64,192,64,192,192,192,192,192,32,0,0,160,0,0,32,128,0,160,128,0,32,0,128,160,0,128,32,128,128,160,128,128,96,0,0,224,0,0,96,128,0,224,128,0,96,0,128,224,0,128,96,128,128,224,128,128,32,64,0,160,64,0,32,192,0,160,192,0,32,64,128,160,64,128,32,192,128,160,192,128,96,64,0,224,64,0,96,192,0,224,192,0,96,64,128,224,64,128,96,192,128,224,192,128,32,0,64,160,0,64,32,128,64,160,128,64,32,0,192,160,0,192,32,128,192,160,128,192,96,0,64,224,0,64,96,128,64,224,128,64,96,0,192,224,0,192,96,128,192,224,128,192,32,64,64,160,64,64,32,192,64,160,192,64,32,64,192,160,64,192,32,192,192,160,192,192,96,64,64,224,64,64,96,192,64,224,192,64,96,64,192,224,64,192,96,192,192,224,192,192,0,32,0,128,32,0,0,160,0,128,160,0,0,32,128,128,32,128,0,160,128,128,160,128,64,32,0,192,32,0,64,160,0,192,160,0,64,32,128,192,32,128,64,160,128,192,160,128,0,96,0,128,96,0,0,224,0,128,224,0,0,96,128,128,96,128,0,224,128,128,224,128,64,96,0,192,96,0,64,224,0,192,224,0,64,96,128,192,96,128,64,224,128,192,224,128,0,32,64,128,32,64,0,160,64,128,160,64,0,32,192,128,32,192,0,160,192,128,160,192,64,32,64,192,32,64,64,160,64,192,160,64,64,32,192,192,32,192,64,160,192,192,160,192,0,96,64,128,96,64,0,224,64,128,224,64,0,96,192,128,96,192,0,224,192,128,224,192,64,96,64,192,96,64,64,224,64,192,224,64,64,96,192,192,96,192,64,224,192,192,224,192,32,32,0,160,32,0,32,160,0,160,160,0,32,32,128,160,32,128,32,160,128,160,160,128,96,32,0,224,32,0,96,160,0,224,160,0,96,32,128,224,32,128,96,160,128,224,160,128,32,96,0,160,96,0,32,224,0,160,224,0,32,96,128,160,96,128,32,224,128,160,224,128,96,96,0,224,96,0,96,224,0,224,224,0,96,96,128,224,96,128,96,224,128,224,224,128,32,32,64,160,32,64,32,160,64,160,160,64,32,32,192,160,32,192,32,160,192,160,160,192,96,32,64,224,32,64,96,160,64,224,160,64,96,32,192,224,32,192,96,160,192,224,160,192,32,96,64,160,96,64,32,224,64,160,224,64,32,96,192,160,96,192,32,224,192,160,224,192,96,96,64,224,96,64,96,224,64,224,224,64,96,96,192,224,96,192,96,224,192,0,0,0]