test_dataset.py 1.53 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
Hang Zhang committed
11
12
13
14
15
from tqdm import tqdm
from torch.utils import data
import torchvision.transforms as transform
from encoding.datasets import get_segmentation_dataset

Hang Zhang's avatar
Hang Zhang committed
16
def test_ade_dataset():
Hang Zhang's avatar
Hang Zhang committed
17

Hang Zhang's avatar
Hang Zhang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    def test_dataset(dataset_name):
        input_transform = transform.Compose([
                transform.ToTensor(),
                transform.Normalize([.485, .456, .406], [.229, .224, .225])])
        trainset = get_segmentation_dataset(dataset_name, split='val', mode='train',
                                            transform=input_transform)
        trainloader = data.DataLoader(trainset, batch_size=16,
                                      drop_last=True, shuffle=True)
        tbar = tqdm(trainloader)
        max_label = -10
        for i, (image, target) in enumerate(tbar):
            tmax = target.max().item()
            tmin = target.min().item()
            assert(tmin >= -1)
            if tmax > max_label:
                max_label = tmax
            assert(max_label < trainset.NUM_CLASS)
            tbar.set_description("Batch %d, max label %d"%(i, max_label))
    test_dataset('ade20k')
Hang Zhang's avatar
Hang Zhang committed
37
38

if __name__ == "__main__":
Hang Zhang's avatar
Hang Zhang committed
39
40
    import nose
    nose.runmodule()