##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## ECE Department, Rutgers University ## Email: zhang.hang@rutgers.edu ## Copyright (c) 2017 ## ## This source code is licensed under the MIT-style license found in the ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from tqdm import tqdm from torch.utils import data import torchvision.transforms as transform from encoding.datasets import get_segmentation_dataset def test_ade_dataset(): def test_dataset(dataset_name): input_transform = transform.Compose([ transform.ToTensor(), transform.Normalize([.485, .456, .406], [.229, .224, .225])]) trainset = get_segmentation_dataset(dataset_name, split='val', mode='train', transform=input_transform) trainloader = data.DataLoader(trainset, batch_size=16, drop_last=True, shuffle=True) tbar = tqdm(trainloader) max_label = -10 for i, (image, target) in enumerate(tbar): tmax = target.max().item() tmin = target.min().item() assert(tmin >= -1) if tmax > max_label: max_label = tmax assert(max_label < trainset.NUM_CLASS) tbar.set_description("Batch %d, max label %d"%(i, max_label)) test_dataset('ade20k') if __name__ == "__main__": import nose nose.runmodule()