train.py 12.5 KB
Newer Older
Hang Zhang's avatar
Hang Zhang committed
1
2
3
4
5
6
7
###########################################################################
# Created by: Hang Zhang 
# Email: zhang.hang@rutgers.edu 
# Copyright (c) 2017
###########################################################################

import os
Hang Zhang's avatar
Hang Zhang committed
8
import copy
Hang Zhang's avatar
Hang Zhang committed
9
import argparse
Hang Zhang's avatar
Hang Zhang committed
10
11
12
13
14
15
16
17
18
import numpy as np
from tqdm import tqdm

import torch
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather

import encoding.utils as utils
Hang Zhang's avatar
Hang Zhang committed
19
from encoding.nn import SegmentationLosses, SyncBatchNorm
Hang Zhang's avatar
Hang Zhang committed
20
from encoding.parallel import DataParallelModel, DataParallelCriterion
Hang Zhang's avatar
Hang Zhang committed
21
from encoding.datasets import get_dataset
Hang Zhang's avatar
Hang Zhang committed
22
23
from encoding.models import get_segmentation_model

Hang Zhang's avatar
Hang Zhang committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
class Options():
    def __init__(self):
        parser = argparse.ArgumentParser(description='PyTorch \
            Segmentation')
        # model and dataset 
        parser.add_argument('--model', type=str, default='encnet',
                            help='model name (default: encnet)')
        parser.add_argument('--backbone', type=str, default='resnet50',
                            help='backbone name (default: resnet50)')
        parser.add_argument('--dataset', type=str, default='ade20k',
                            help='dataset name (default: pascal12)')
        parser.add_argument('--workers', type=int, default=16,
                            metavar='N', help='dataloader threads')
        parser.add_argument('--base-size', type=int, default=520,
                            help='base image size')
        parser.add_argument('--crop-size', type=int, default=480,
                            help='crop image size')
        parser.add_argument('--train-split', type=str, default='train',
                            help='dataset train split (default: train)')
        # training hyper params
        parser.add_argument('--aux', action='store_true', default= False,
                            help='Auxilary Loss')
        parser.add_argument('--aux-weight', type=float, default=0.2,
                            help='Auxilary loss weight (default: 0.2)')
        parser.add_argument('--se-loss', action='store_true', default= False,
                            help='Semantic Encoding Loss SE-loss')
        parser.add_argument('--se-weight', type=float, default=0.2,
                            help='SE-loss weight (default: 0.2)')
        parser.add_argument('--epochs', type=int, default=None, metavar='N',
                            help='number of epochs to train (default: auto)')
        parser.add_argument('--start_epoch', type=int, default=0,
                            metavar='N', help='start epochs (default:0)')
        parser.add_argument('--batch-size', type=int, default=16,
                            metavar='N', help='input batch size for \
                            training (default: auto)')
        parser.add_argument('--test-batch-size', type=int, default=16,
                            metavar='N', help='input batch size for \
                            testing (default: same as batch size)')
        # optimizer params
        parser.add_argument('--lr', type=float, default=None, metavar='LR',
                            help='learning rate (default: auto)')
        parser.add_argument('--lr-scheduler', type=str, default='poly',
                            help='learning rate scheduler (default: poly)')
        parser.add_argument('--momentum', type=float, default=0.9,
                            metavar='M', help='momentum (default: 0.9)')
        parser.add_argument('--weight-decay', type=float, default=1e-4,
                            metavar='M', help='w-decay (default: 1e-4)')
        # cuda, seed and logging
        parser.add_argument('--no-cuda', action='store_true', default=
                            False, help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        # checking point
        parser.add_argument('--resume', type=str, default=None,
                            help='put the path to resuming file if needed')
        parser.add_argument('--checkname', type=str, default='default',
                            help='set the checkpoint name')
        parser.add_argument('--model-zoo', type=str, default=None,
                            help='evaluating on model zoo model')
        # finetuning pre-trained models
        parser.add_argument('--ft', action='store_true', default= False,
                            help='finetuning on a different dataset')
        # evaluation option
        parser.add_argument('--eval', action='store_true', default= False,
                            help='evaluating mIoU')
        parser.add_argument('--test-val', action='store_true', default= False,
                            help='generate masks on val set')
        parser.add_argument('--no-val', action='store_true', default= False,
                            help='skip validation during training')
        # test option
        parser.add_argument('--test-folder', type=str, default=None,
                            help='path to test image folder')
        # the parser
        self.parser = parser

    def parse(self):
        args = self.parser.parse_args()
        args.cuda = not args.no_cuda and torch.cuda.is_available()
        # default settings for epochs, batch_size and lr
        if args.epochs is None:
            epoches = {
                'coco': 30,
                'pascal_aug': 80,
                'pascal_voc': 50,
                'pcontext': 80,
                'ade20k': 180,
                'citys': 240,
            }
            args.epochs = epoches[args.dataset.lower()]
        if args.lr is None:
            lrs = {
                'coco': 0.004,
                'pascal_aug': 0.001,
                'pascal_voc': 0.0001,
                'pcontext': 0.001,
                'ade20k': 0.004,
                'citys': 0.004,
            }
            args.lr = lrs[args.dataset.lower()] / 16 * args.batch_size
        print(args)
        return args
Hang Zhang's avatar
Hang Zhang committed
125
126
127
128
129
130
131
132
133
134


class Trainer():
    def __init__(self, args):
        self.args = args
        # data transforms
        input_transform = transform.Compose([
            transform.ToTensor(),
            transform.Normalize([.485, .456, .406], [.229, .224, .225])])
        # dataset
Hang Zhang's avatar
Hang Zhang committed
135
136
        data_kwargs = {'transform': input_transform, 'base_size': args.base_size,
                       'crop_size': args.crop_size}
Hang Zhang's avatar
Hang Zhang committed
137
138
        trainset = get_dataset(args.dataset, split=args.train_split, mode='train', **data_kwargs)
        testset = get_dataset(args.dataset, split='val', mode ='val', **data_kwargs)
Hang Zhang's avatar
Hang Zhang committed
139
140
141
142
143
144
145
146
147
148
149
        # dataloader
        kwargs = {'num_workers': args.workers, 'pin_memory': True} \
            if args.cuda else {}
        self.trainloader = data.DataLoader(trainset, batch_size=args.batch_size,
                                           drop_last=True, shuffle=True, **kwargs)
        self.valloader = data.DataLoader(testset, batch_size=args.batch_size,
                                         drop_last=False, shuffle=False, **kwargs)
        self.nclass = trainset.num_class
        # model
        model = get_segmentation_model(args.model, dataset=args.dataset,
                                       backbone = args.backbone, aux = args.aux,
Hang Zhang's avatar
Hang Zhang committed
150
                                       se_loss = args.se_loss, norm_layer = SyncBatchNorm,
Hang Zhang's avatar
Hang Zhang committed
151
                                       base_size=args.base_size, crop_size=args.crop_size)
Hang Zhang's avatar
Hang Zhang committed
152
153
154
155
156
157
158
        print(model)
        # optimizer using different LR
        params_list = [{'params': model.pretrained.parameters(), 'lr': args.lr},]
        if hasattr(model, 'head'):
            params_list.append({'params': model.head.parameters(), 'lr': args.lr*10})
        if hasattr(model, 'auxlayer'):
            params_list.append({'params': model.auxlayer.parameters(), 'lr': args.lr*10})
Hang Zhang's avatar
Hang Zhang committed
159
160
        optimizer = torch.optim.SGD(params_list, lr=args.lr,
            momentum=args.momentum, weight_decay=args.weight_decay)
Hang Zhang's avatar
Hang Zhang committed
161
        # criterions
Hang Zhang's avatar
Hang Zhang committed
162
163
        self.criterion = SegmentationLosses(se_loss=args.se_loss,
                                            aux=args.aux,
Hang Zhang's avatar
Hang Zhang committed
164
165
166
                                            nclass=self.nclass, 
                                            se_weight=args.se_weight,
                                            aux_weight=args.aux_weight)
Hang Zhang's avatar
Hang Zhang committed
167
168
169
170
171
        self.model, self.optimizer = model, optimizer
        # using cuda
        if args.cuda:
            self.model = DataParallelModel(self.model).cuda()
            self.criterion = DataParallelCriterion(self.criterion).cuda()
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        # resuming checkpoint
        if args.resume is not None:
            if not os.path.isfile(args.resume):
                raise RuntimeError("=> no checkpoint found at '{}'" .format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            if args.cuda:
                self.model.module.load_state_dict(checkpoint['state_dict'])
            else:
                self.model.load_state_dict(checkpoint['state_dict'])
            if not args.ft:
                self.optimizer.load_state_dict(checkpoint['optimizer'])
            self.best_pred = checkpoint['best_pred']
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
Hang Zhang's avatar
Hang Zhang committed
187
188
189
        # clear start epoch if fine-tuning
        if args.ft:
            args.start_epoch = 0
Hang Zhang's avatar
Hang Zhang committed
190
        # lr scheduler
Hang Zhang's avatar
Hang Zhang committed
191
192
        self.scheduler = utils.LR_Scheduler_Head(args.lr_scheduler, args.lr,
                                                 args.epochs, len(self.trainloader))
Hang Zhang's avatar
Hang Zhang committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        self.best_pred = 0.0

    def training(self, epoch):
        train_loss = 0.0
        self.model.train()
        tbar = tqdm(self.trainloader)
        for i, (image, target) in enumerate(tbar):
            self.scheduler(self.optimizer, i, epoch, self.best_pred)
            self.optimizer.zero_grad()
            outputs = self.model(image)
            loss = self.criterion(outputs, target)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
            tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))

Hang Zhang's avatar
Hang Zhang committed
209
210
211
212
213
214
215
216
217
218
        if self.args.no_val:
            # save checkpoint every epoch
            is_best = False
            utils.save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': self.model.module.state_dict(),
                'optimizer': self.optimizer.state_dict(),
                'best_pred': self.best_pred,
            }, self.args, is_best)

Hang Zhang's avatar
Hang Zhang committed
219
220
221

    def validation(self, epoch):
        # Fast test during the training
Hang Zhang's avatar
Hang Zhang committed
222
223
        def eval_batch(model, image, target):
            outputs = model(image)
Hang Zhang's avatar
Hang Zhang committed
224
225
226
227
228
229
230
231
232
233
234
235
            outputs = gather(outputs, 0, dim=0)
            pred = outputs[0]
            target = target.cuda()
            correct, labeled = utils.batch_pix_accuracy(pred.data, target)
            inter, union = utils.batch_intersection_union(pred.data, target, self.nclass)
            return correct, labeled, inter, union

        is_best = False
        self.model.eval()
        total_inter, total_union, total_correct, total_label = 0, 0, 0, 0
        tbar = tqdm(self.valloader, desc='\r')
        for i, (image, target) in enumerate(tbar):
Hang Zhang's avatar
Hang Zhang committed
236
            with torch.no_grad():
Hang Zhang's avatar
Hang Zhang committed
237
                correct, labeled, inter, union = eval_batch(self.model, image, target)
Hang Zhang's avatar
Hang Zhang committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

            total_correct += correct
            total_label += labeled
            total_inter += inter
            total_union += union
            pixAcc = 1.0 * total_correct / (np.spacing(1) + total_label)
            IoU = 1.0 * total_inter / (np.spacing(1) + total_union)
            mIoU = IoU.mean()
            tbar.set_description(
                'pixAcc: %.3f, mIoU: %.3f' % (pixAcc, mIoU))

        new_pred = (pixAcc + mIoU)/2
        if new_pred > self.best_pred:
            is_best = True
            self.best_pred = new_pred
Hang Zhang's avatar
Hang Zhang committed
253
254
255
256
257
258
        utils.save_checkpoint({
            'epoch': epoch + 1,
            'state_dict': self.model.module.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'best_pred': self.best_pred,
        }, self.args, is_best)
Hang Zhang's avatar
Hang Zhang committed
259
260
261
262
263
264


if __name__ == "__main__":
    args = Options().parse()
    torch.manual_seed(args.seed)
    trainer = Trainer(args)
Hang Zhang's avatar
Hang Zhang committed
265
266
    print('Starting Epoch:', trainer.args.start_epoch)
    print('Total Epoches:', trainer.args.epochs)
Hang Zhang's avatar
Hang Zhang committed
267
268
269
270
271
272
273
    if args.eval:
        trainer.validation(trainer.args.start_epoch)
    else:
        for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
            trainer.training(epoch)
            if not trainer.args.no_val:
                trainer.validation(epoch)