metrics.py 5.48 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Hang Zhang's avatar
Hang Zhang committed
11
import threading
Zhang's avatar
v0.4.2  
Zhang committed
12
13
14
import numpy as np
import torch

Hang Zhang's avatar
Hang Zhang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
__all__ = ['accuracy', 'SegmentationMetric', 'batch_intersection_union', 'batch_pix_accuracy',
           'pixel_accuracy', 'intersection_and_union']

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res

Hang Zhang's avatar
Hang Zhang committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
class SegmentationMetric(object):
    """Computes pixAcc and mIoU metric scroes
    """
    def __init__(self, nclass):
        self.nclass = nclass
        self.lock = threading.Lock()
        self.reset()

    def update(self, labels, preds):
        def evaluate_worker(self, label, pred):
            correct, labeled = batch_pix_accuracy(
                pred, label)
            inter, union = batch_intersection_union(
                pred, label, self.nclass)
            with self.lock:
                self.total_correct += correct
                self.total_label += labeled
                self.total_inter += inter
                self.total_union += union
            return

        if isinstance(preds, torch.Tensor):
            evaluate_worker(self, labels, preds)
        elif isinstance(preds, (list, tuple)):
            threads = [threading.Thread(target=evaluate_worker,
                                        args=(self, label, pred),
                                       )
                       for (label, pred) in zip(labels, preds)]
            for thread in threads:
                thread.start()
            for thread in threads:
                thread.join()
        else:
            raise NotImplemented

    def get(self):
        pixAcc = 1.0 * self.total_correct / (np.spacing(1) + self.total_label)
        IoU = 1.0 * self.total_inter / (np.spacing(1) + self.total_union)
        mIoU = IoU.mean()
        return pixAcc, mIoU
 
    def reset(self):
        self.total_inter = 0
        self.total_union = 0
        self.total_correct = 0
        self.total_label = 0
        return


def batch_pix_accuracy(output, target):
Zhang's avatar
v0.4.2  
Zhang committed
84
85
86
87
88
    """Batch Pixel Accuracy
    Args:
        predict: input 4D tensor
        target: label 3D tensor
    """
Hang Zhang's avatar
Hang Zhang committed
89
90
91
92
93
    _, predict = torch.max(output, 1)

    predict = predict.cpu().numpy().astype('int64') + 1
    target = target.cpu().numpy().astype('int64') + 1

Zhang's avatar
v0.4.2  
Zhang committed
94
95
    pixel_labeled = np.sum(target > 0)
    pixel_correct = np.sum((predict == target)*(target > 0))
Hang Zhang's avatar
Hang Zhang committed
96
97
    assert pixel_correct <= pixel_labeled, \
        "Correct area should be smaller than Labeled"
Zhang's avatar
v0.4.2  
Zhang committed
98
99
100
    return pixel_correct, pixel_labeled


Hang Zhang's avatar
Hang Zhang committed
101
def batch_intersection_union(output, target, nclass):
Zhang's avatar
v0.4.2  
Zhang committed
102
103
104
105
106
107
    """Batch Intersection of Union
    Args:
        predict: input 4D tensor
        target: label 3D tensor
        nclass: number of categories (int)
    """
Hang Zhang's avatar
Hang Zhang committed
108
    _, predict = torch.max(output, 1)
Zhang's avatar
v0.4.2  
Zhang committed
109
110
111
    mini = 1
    maxi = nclass
    nbins = nclass
Hang Zhang's avatar
Hang Zhang committed
112
113
    predict = predict.cpu().numpy().astype('int64') + 1
    target = target.cpu().numpy().astype('int64') + 1
Zhang's avatar
v0.4.2  
Zhang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    predict = predict * (target > 0).astype(predict.dtype)
    intersection = predict * (predict == target)
    # areas of intersection and union
    area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
    area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
    area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
    area_union = area_pred + area_lab - area_inter
    assert (area_inter <= area_union).all(), \
        "Intersection area should be smaller than Union area"
    return area_inter, area_union


# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
def pixel_accuracy(im_pred, im_lab):
    im_pred = np.asarray(im_pred)
    im_lab = np.asarray(im_lab)

    # Remove classes from unlabeled pixels in gt image. 
    # We should not penalize detections in unlabeled portions of the image.
    pixel_labeled = np.sum(im_lab > 0)
    pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
    #pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
    return pixel_correct, pixel_labeled


def intersection_and_union(im_pred, im_lab, num_class):
    im_pred = np.asarray(im_pred)
    im_lab = np.asarray(im_lab)
    # Remove classes from unlabeled pixels in gt image. 
    im_pred = im_pred * (im_lab > 0)
    # Compute area intersection:
    intersection = im_pred * (im_pred == im_lab)
    area_inter, _ = np.histogram(intersection, bins=num_class-1,
                                        range=(1, num_class - 1))
    # Compute area union: 
    area_pred, _ = np.histogram(im_pred, bins=num_class-1,
                                range=(1, num_class - 1))
    area_lab, _ = np.histogram(im_lab, bins=num_class-1,
                               range=(1, num_class - 1))
    area_union = area_pred + area_lab - area_inter
    return area_inter, area_union