metrics.py 3.13 KB
Newer Older
Zhang's avatar
v0.4.2  
Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import numpy as np
import torch

def batch_pix_accuracy(predict, target):
    """Batch Pixel Accuracy
    Args:
        predict: input 4D tensor
        target: label 3D tensor
    """
    _, predict = torch.max(predict, 1)
    predict = predict.cpu().numpy() + 1
    target = target.cpu().numpy() + 1
    pixel_labeled = np.sum(target > 0)
    pixel_correct = np.sum((predict == target)*(target > 0))
Hang Zhang's avatar
Hang Zhang committed
25
26
    assert pixel_correct <= pixel_labeled, \
        "Correct area should be smaller than Labeled"
Zhang's avatar
v0.4.2  
Zhang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    return pixel_correct, pixel_labeled


def batch_intersection_union(predict, target, nclass):
    """Batch Intersection of Union
    Args:
        predict: input 4D tensor
        target: label 3D tensor
        nclass: number of categories (int)
    """
    _, predict = torch.max(predict, 1)
    mini = 1
    maxi = nclass
    nbins = nclass
    predict = predict.cpu().numpy() + 1
    target = target.cpu().numpy() + 1

    predict = predict * (target > 0).astype(predict.dtype)
    intersection = predict * (predict == target)
    # areas of intersection and union
    area_inter, _ = np.histogram(intersection, bins=nbins, range=(mini, maxi))
    area_pred, _ = np.histogram(predict, bins=nbins, range=(mini, maxi))
    area_lab, _ = np.histogram(target, bins=nbins, range=(mini, maxi))
    area_union = area_pred + area_lab - area_inter
    assert (area_inter <= area_union).all(), \
        "Intersection area should be smaller than Union area"
    return area_inter, area_union


# ref https://github.com/CSAILVision/sceneparsing/blob/master/evaluationCode/utils_eval.py
def pixel_accuracy(im_pred, im_lab):
    im_pred = np.asarray(im_pred)
    im_lab = np.asarray(im_lab)

    # Remove classes from unlabeled pixels in gt image. 
    # We should not penalize detections in unlabeled portions of the image.
    pixel_labeled = np.sum(im_lab > 0)
    pixel_correct = np.sum((im_pred == im_lab) * (im_lab > 0))
    #pixel_accuracy = 1.0 * pixel_correct / pixel_labeled
    return pixel_correct, pixel_labeled


def intersection_and_union(im_pred, im_lab, num_class):
    im_pred = np.asarray(im_pred)
    im_lab = np.asarray(im_lab)
    # Remove classes from unlabeled pixels in gt image. 
    im_pred = im_pred * (im_lab > 0)
    # Compute area intersection:
    intersection = im_pred * (im_pred == im_lab)
    area_inter, _ = np.histogram(intersection, bins=num_class-1,
                                        range=(1, num_class - 1))
    # Compute area union: 
    area_pred, _ = np.histogram(im_pred, bins=num_class-1,
                                range=(1, num_class - 1))
    area_lab, _ = np.histogram(im_lab, bins=num_class-1,
                               range=(1, num_class - 1))
    area_union = area_pred + area_lab - area_inter
    return area_inter, area_union