encoding.py 14.9 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
Hang Zhang's avatar
path  
Hang Zhang committed
13
from torch.nn import Module, Parameter
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
14
15
16
17
import torch.nn.functional as F
from torch.autograd import Function, Variable

from .._ext import encoding_lib
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
18
from ..functions import scaledL2, aggregate
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
19
from ..parallel import my_data_parallel
Hang Zhang's avatar
path  
Hang Zhang committed
20
from ..functions import dilatedavgpool2d
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
21

Hang Zhang's avatar
path  
Hang Zhang committed
22
__all__ = ['Encoding', 'EncodingShake', 'Inspiration', 'DilatedAvgPool2d', 'UpsampleConv2d'] 
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
23

Hang Zhang's avatar
path  
Hang Zhang committed
24
class Encoding(Module):
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
25
26
27
28
    r"""
    Encoding Layer: a learnable residual encoder over 3d or 4d input that 
    is seen as a mini-batch.

Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
29
    .. image:: _static/img/cvpr17.svg
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
30
31
32
33
34
35
36
37
38
        :width: 50%
        :align: center

    .. math::

        e_{ik} = \frac{exp(-s_k\|x_{i}-c_k\|^2)}{\sum_{j=1}^K exp(-s_j\|x_{i}-c_j\|^2)} (x_i - c_k)

    Please see the `example of training Deep TEN <./experiments/texture.html>`_.

Hang Zhang's avatar
path  
Hang Zhang committed
39
40
41
    Reference:
        Hang Zhang, Jia Xue, and Kristin Dana. "Deep TEN: Texture Encoding Network." *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017*

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    Args:
        D: dimention of the features or feature channels
        K: number of codeswords

    Shape:
        - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` or :math:`\mathcal{R}^{B\times D\times H\times W}` (where :math:`B` is batch, :math:`N` is total number of features or :math:`H\times W`.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`
        
    Attributes:
        codewords (Tensor): the learnable codewords of shape (:math:`K\times D`)
        scale (Tensor): the learnable scale factor of visual centers

    Examples:
        >>> import encoding
        >>> import torch
        >>> import torch.nn.functional as F
Hang Zhang's avatar
path  
Hang Zhang committed
58
        >>> from torch.autograd import Variable
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
59
60
61
62
63
64
65
66
67
        >>> B,C,H,W,K = 2,3,4,5,6
        >>> X = Variable(torch.cuda.DoubleTensor(B,C,H,W).uniform_(-0.5,0.5), requires_grad=True)
        >>> layer = encoding.Encoding(C,K).double().cuda()
        >>> E = layer(X)
    """
    def __init__(self, D, K):
        super(Encoding, self).__init__()
        # init codewords and smoothing factor
        self.D, self.K = D, K
Hang Zhang's avatar
path  
Hang Zhang committed
68
        self.codewords = Parameter(torch.Tensor(K, D), 
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
69
            requires_grad=True)
Hang Zhang's avatar
path  
Hang Zhang committed
70
        self.scale = Parameter(torch.Tensor(K), requires_grad=True) 
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
71
72
73
74
75
        self.reset_params()
        
    def reset_params(self):
        std1 = 1./((self.K*self.D)**(1/2))
        self.codewords.data.uniform_(-std1, std1)
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
76
        self.scale.data.uniform_(-1, 0)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
77
78
79
80
81
82
83
84

    def forward(self, X):
        if isinstance(X, tuple) or isinstance(X, list):
            # for self-parallel mode, please see encoding.nn
            return my_data_parallel(self, X)
        elif not isinstance(X, Variable):
            raise RuntimeError('unknown input type')
        # input X is a 4D tensor
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
85
        assert(X.size(1)==self.D)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
86
87
88
89
90
91
92
93
94
95
96
        if X.dim() == 3:
            # BxDxN
            B, N, K, D = X.size(0), X.size(2), self.K, self.D
            X = X.transpose(1,2).contiguous()
        elif X.dim() == 4:
            # BxDxHxW
            B, N, K, D = X.size(0), X.size(2)*X.size(3), self.K, self.D
            X = X.view(B,D,-1).transpose(1,2).contiguous()
        else:
            raise RuntimeError('Encoding Layer unknown input dims!')
        # assignment weights
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
97
        A = F.softmax(scaledL2(X, self.codewords, self.scale), dim=2)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
98
99
100
101
102
103
104
105
106
        # aggregate
        E = aggregate(A, X, self.codewords)
        return E

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.D) + '=>' + str(self.K) + 'x' \
            + str(self.D) + ')'

Hang Zhang's avatar
path  
Hang Zhang committed
107
class EncodingShake(Module):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
108
109
110
111
    def __init__(self, D, K):
        super(EncodingShake, self).__init__()
        # init codewords and smoothing factor
        self.D, self.K = D, K
Hang Zhang's avatar
path  
Hang Zhang committed
112
        self.codewords = Parameter(torch.Tensor(K, D), 
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
113
            requires_grad=True)
Hang Zhang's avatar
path  
Hang Zhang committed
114
        self.scale = Parameter(torch.Tensor(K), requires_grad=True) 
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        self.reset_params()
        
    def reset_params(self):
        std1 = 1./((self.K*self.D)**(1/2))
        self.codewords.data.uniform_(-std1, std1)
        self.scale.data.uniform_(-1, 0)

    def shake(self):
        if self.training:
            self.scale.data.uniform_(-1, 0)
        else:
            self.scale.data.zero_().add_(-0.5)

    def forward(self, X):
        if isinstance(X, tuple) or isinstance(X, list):
            # for self-parallel mode, please see encoding.nn
            return my_data_parallel(self, X)
        elif not isinstance(X, Variable):
            raise RuntimeError('unknown input type')
        # input X is a 4D tensor
        assert(X.size(1)==self.D)
        if X.dim() == 3:
            # BxDxN
            B, N, K, D = X.size(0), X.size(2), self.K, self.D
            X = X.transpose(1,2).contiguous()
        elif X.dim() == 4:
            # BxDxHxW
            B, N, K, D = X.size(0), X.size(2)*X.size(3), self.K, self.D
            X = X.view(B,D,-1).transpose(1,2).contiguous()
        else:
            raise RuntimeError('Encoding Layer unknown input dims!')
        # shake
        self.shake()
        # assignment weights
Hang Zhang's avatar
path  
Hang Zhang committed
149
        A = F.softmax(scaledL2(X, self.codewords, self.scale), dim=2)
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
150
151
152
153
154
155
156
157
158
159
160
        # aggregate
        E = aggregate(A, X, self.codewords)
        # shake
        self.shake()
        return E

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.D) + '=>' + str(self.K) + 'x' \
            + str(self.D) + ')'

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
161

Hang Zhang's avatar
path  
Hang Zhang committed
162
class Inspiration(Module):
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
163
164
165
    r""" 
    Inspiration Layer (CoMatch Layer) enables the multi-style transfer in feed-forward network, which learns to match the target feature statistics during the training. 
    This module is differentialble and can be inserted in standard feed-forward network to be learned directly from the loss function without additional supervision. 
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
166
167
168
169
170
171
172
173

    .. math::
        Y = \phi^{-1}[\phi(\mathcal{F}^T)W\mathcal{G}]

    Please see the `example of MSG-Net <./experiments/style.html>`_  
    training multi-style generative network for real-time transfer.

    Reference:
Hang Zhang's avatar
v0.1.0  
Hang Zhang committed
174
        Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer."  *arXiv preprint arXiv:1703.06953 (2017)*
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
175
176
177
178
    """
    def __init__(self, C, B=1):
        super(Inspiration, self).__init__()
        # B is equal to 1 or input mini_batch
Hang Zhang's avatar
path  
Hang Zhang committed
179
        self.weight = Parameter(torch.Tensor(1,C,C), requires_grad=True)
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        # non-parameter buffer
        self.G = Variable(torch.Tensor(B,C,C), requires_grad=True)
        self.C = C
        self.reset_parameters()

    def reset_parameters(self):
        self.weight.data.uniform_(0.0, 0.02)

    def setTarget(self, target):
        self.G = target

    def forward(self, X):
        # input X is a 3D feature map
        self.P = torch.bmm(self.weight.expand_as(self.G),self.G)
        return torch.bmm(self.P.transpose(1,2).expand(X.size(0), self.C, self.C), X.view(X.size(0),X.size(1),-1)).view_as(X)

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.C) + ')'


Hang Zhang's avatar
path  
Hang Zhang committed
201
202
203
204
205
206
207
208
209
210
211
212
class DilatedAvgPool2d(Module):
    r"""We provide Dilated Average Pooling for the dilation of Densenet as
    in :class:`encoding.dilated.DenseNet`.

    Reference::
        We provide this code for a comming paper.

    Applies a 2D average pooling over an input signal composed of several input planes.

    In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
    output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
    can be precisely described as:
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
213
214

    .. math::
Hang Zhang's avatar
path  
Hang Zhang committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

        \begin{array}{ll}
        out(b, c, h, w)  = 1 / (kH * kW) * 
        \sum_{{m}=0}^{kH-1} \sum_{{n}=0}^{kW-1}
        input(b, c, dH * h + m, dW * w + n)
        \end{array}

    | If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
      for :attr:`padding` number of points

    The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:

        - a single ``int`` -- in which case the same value is used for the height and width dimension
        - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
          and the second `int` for the width dimension

    Args:
        kernel_size: the size of the window
        stride: the stride of the window. Default value is :attr:`kernel_size`
        padding: implicit zero padding to be added on both sides
        dilation: the dilation parameter similar to Conv2d

    Shape:
        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})` where
          :math:`H_{out} = floor((H_{in}  + 2 * padding[0] - kernel\_size[0]) / stride[0] + 1)`
          :math:`W_{out} = floor((W_{in}  + 2 * padding[1] - kernel\_size[1]) / stride[1] + 1)`

    Examples::

        >>> # pool of square window of size=3, stride=2, dilation=2
        >>> m = nn.DilatedAvgPool2d(3, stride=2, dilation=2)
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 32))
        >>> output = m(input)

Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
250
    """
Hang Zhang's avatar
path  
Hang Zhang committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def __init__(self, kernel_size, stride=None, padding=0, dilation=1):
        super(DilatedAvgPool2d, self).__init__()
        self.kernel_size = kernel_size
        self.stride = stride or kernel_size
        self.padding = padding
        self.dilation = dilation

    def forward(self, input):
        if isinstance(input, Variable):
            return dilatedavgpool2d(input, self.kernel_size, self.stride,
                                self.padding, self.dilation)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')

    def __repr__(self):
        return self.__class__.__name__ + ' (' \
            + 'size=' + str(self.kernel_size) \
            + ', stride=' + str(self.stride) \
            + ', padding=' + str(self.padding) \
            + ', dilation=' + str(self.dilation) + ')'


class UpsampleConv2d(Module):
    r"""
    To avoid the checkerboard artifacts of standard Fractionally-strided Convolution, we adapt an integer stride convolution but producing a :math:`2\times 2` outputs for each convolutional window. 

    .. image:: _static/img/upconv.png
        :width: 50%
        :align: center

    Reference:
        Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer."  *arXiv preprint arXiv:1703.06953 (2017)*

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
        output_padding (int or tuple, optional): Zero-padding added to one side of the output. Default: 0
        groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
        bias (bool, optional): If True, adds a learnable bias to the output. Default: True
        dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
        scale_factor (int): scaling factor for upsampling convolution. Default: 1

    Shape:
        - Input: :math:`(N, C_{in}, H_{in}, W_{in})`
        - Output: :math:`(N, C_{out}, H_{out}, W_{out})` where
          :math:`H_{out} = scale * (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0] + output\_padding[0]`
          :math:`W_{out} = scale * (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1] + output\_padding[1]`

    Attributes:
        weight (Tensor): the learnable weights of the module of shape
                         (in_channels, scale * scale * out_channels, kernel_size[0], kernel_size[1])
        bias (Tensor):   the learnable bias of the module of shape (scale * scale * out_channels)

    Examples::
        >>> # With square kernels and equal stride
        >>> m = nn.UpsampleCov2d(16, 33, 3, stride=2)
        >>> # non-square kernels and unequal stride and with padding
        >>> m = nn.UpsampleCov2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
        >>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
        >>> output = m(input)
        >>> # exact output size can be also specified as an argument
        >>> input = autograd.Variable(torch.randn(1, 16, 12, 12))
        >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
        >>> upsample = nn.UpsampleCov2d(16, 16, 3, stride=2, padding=1)
        >>> h = downsample(input)
        >>> h.size()
        torch.Size([1, 16, 6, 6])
        >>> output = upsample(h, output_size=input.size())
        >>> output.size()
        torch.Size([1, 16, 12, 12])

    """
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, scale_factor =1, 
                 bias=True):
        super(UpsampleConv2d, self).__init__()
        kernel_size = _pair(kernel_size)
        stride = _pair(stride)
        padding = _pair(padding)
        dilation = _pair(dilation)
        if in_channels % groups != 0:
            raise ValueError('in_channels must be divisible by groups')
        if out_channels % groups != 0:
            raise ValueError('out_channels must be divisible by groups')
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.scale_factor = scale_factor
        self.weight = Parameter(torch.Tensor(
            out_channels * scale_factor * scale_factor, 
            in_channels // groups, *kernel_size))
        if bias:
            self.bias = Parameter(torch.Tensor(out_channels * 
                scale_factor * scale_factor))
        else:
            self.register_parameter('bias', None)
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)

    def forward(self, input):
        if isinstance(input, Variable):
            out = F.conv2d(input, self.weight, self.bias, self.stride,
                            self.padding, self.dilation, self.groups)
            return F.pixel_shuffle(out, self.scale_factor)
        elif isinstance(input, tuple) or isinstance(input, list):
            return my_data_parallel(self, input)
        else:
            raise RuntimeError('unknown input type')
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
376