encoding.py 8.25 KB
Newer Older
Hang Zhang's avatar
v1.0.1  
Hang Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Hang Zhang
## ECE Department, Rutgers University
## Email: zhang.hang@rutgers.edu
## Copyright (c) 2017
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree 
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

import threading
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function, Variable

from .._ext import encoding_lib
from ..functions import scaledL2, aggregate, aggregateP, residual, assign
from ..parallel import my_data_parallel

__all__ = ['Encoding', 'Inspiration', 'GramMatrix', 'Aggregate','EncodingP']

class Encoding(nn.Module):
    r"""
    Encoding Layer: a learnable residual encoder over 3d or 4d input that 
    is seen as a mini-batch.

    .. image:: http://hangzh.com/figure/cvpr17.svg
        :width: 50%
        :align: center

    .. math::

        e_{ik} = \frac{exp(-s_k\|x_{i}-c_k\|^2)}{\sum_{j=1}^K exp(-s_j\|x_{i}-c_j\|^2)} (x_i - c_k)

    Please see the `example of training Deep TEN <./experiments/texture.html>`_.

    Args:
        D: dimention of the features or feature channels
        K: number of codeswords

    Shape:
        - Input: :math:`X\in\mathcal{R}^{B\times N\times D}` or :math:`\mathcal{R}^{B\times D\times H\times W}` (where :math:`B` is batch, :math:`N` is total number of features or :math:`H\times W`.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`
        
    Attributes:
        codewords (Tensor): the learnable codewords of shape (:math:`K\times D`)
        scale (Tensor): the learnable scale factor of visual centers

    Examples:
        >>> import encoding
        >>> import torch
        >>> import torch.nn.functional as F
        >>> from torch.autograd import Variable, gradcheck
        >>> B,C,H,W,K = 2,3,4,5,6
        >>> X = Variable(torch.cuda.DoubleTensor(B,C,H,W).uniform_(-0.5,0.5), requires_grad=True)
        >>> layer = encoding.Encoding(C,K).double().cuda()
        >>> E = layer(X)

    Reference:
        Hang Zhang, Jia Xue, and Kristin Dana. "Deep TEN: Texture Encoding Network." *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017*
    """
    def __init__(self, D, K):
        super(Encoding, self).__init__()
        # init codewords and smoothing factor
        self.D, self.K = D, K
        self.codewords = nn.Parameter(torch.Tensor(K, D), 
            requires_grad=True)
        self.scale = nn.Parameter(torch.Tensor(K), requires_grad=True) 
        self.reset_params()
        
    def reset_params(self):
        std1 = 1./((self.K*self.D)**(1/2))
        std2 = 1./((self.K)**(1/2))
        self.codewords.data.uniform_(-std1, std1)
        self.scale.data.uniform_(-std2, std2)

    def forward(self, X):
        if isinstance(X, tuple) or isinstance(X, list):
            # for self-parallel mode, please see encoding.nn
            return my_data_parallel(self, X)
        elif not isinstance(X, Variable):
            raise RuntimeError('unknown input type')
        # input X is a 4D tensor
        assert(X.size(1)==self.D,"Encoding Layer wrong channels!")
        if X.dim() == 3:
            # BxDxN
            B, N, K, D = X.size(0), X.size(2), self.K, self.D
            X = X.transpose(1,2).contiguous()
        elif X.dim() == 4:
            # BxDxHxW
            B, N, K, D = X.size(0), X.size(2)*X.size(3), self.K, self.D
            X = X.view(B,D,-1).transpose(1,2).contiguous()
        else:
            raise RuntimeError('Encoding Layer unknown input dims!')
        # assignment weights
        A = F.softmax(scaledL2(X, self.codewords, self.scale))
        # aggregate
        E = aggregate(A, X, self.codewords)
        return E

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.D) + '=>' + str(self.K) + 'x' \
            + str(self.D) + ')'


class Inspiration(nn.Module):
    r""" Inspiration Layer (for MSG-Net). 
    Tuning the featuremap with target Gram Matrix

    .. math::
        Y = \phi^{-1}[\phi(\mathcal{F}^T)W\mathcal{G}]

    Please see the `example of MSG-Net <./experiments/style.html>`_  
    training multi-style generative network for real-time transfer.

    Reference:
        Hang Zhang, and Kristin Dana. "Multi-style Generative Network for Real-time Transfer."  *arXiv preprint arXiv:1703.06953 (2017)*
    """
    def __init__(self, C, B=1):
        super(Inspiration, self).__init__()
        # B is equal to 1 or input mini_batch
        self.weight = nn.Parameter(torch.Tensor(1,C,C), requires_grad=True)
        # non-parameter buffer
        self.G = Variable(torch.Tensor(B,C,C), requires_grad=True)
        self.C = C
        self.reset_parameters()

    def reset_parameters(self):
        self.weight.data.uniform_(0.0, 0.02)

    def setTarget(self, target):
        self.G = target

    def forward(self, X):
        # input X is a 3D feature map
        self.P = torch.bmm(self.weight.expand_as(self.G),self.G)
        return torch.bmm(self.P.transpose(1,2).expand(X.size(0), self.C, self.C), X.view(X.size(0),X.size(1),-1)).view_as(X)

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.C) + ')'


class GramMatrix(nn.Module):
    r""" Gram Matrix for a 4D convolutional featuremaps as a mini-batch

    .. math::
        \mathcal{G} = \sum_{h=1}^{H_i}\sum_{w=1}^{W_i} \mathcal{F}_{h,w}\mathcal{F}_{h,w}^T
    """
    def forward(self, y):
        (b, ch, h, w) = y.size()
        features = y.view(b, ch, w * h)
        features_t = features.transpose(1, 2)
        gram = features.bmm(features_t) / (ch * h * w)
        return gram


class Aggregate(nn.Module):
    r"""
    Aggregate operation, aggregate the residuals (:math:`R`) with 
    assignment weights (:math:`A`).

    .. math::
        e_{k} = \sum_{i=1}^{N} a_{ik} r_{ik}

    Shape:
        - Input: :math:`A\in\mathcal{R}^{B\times N\times K}` :math:`R\in\mathcal{R}^{B\times N\times K\times D}` (where :math:`B` is batch, :math:`N` is total number of features, :math:`K` is number is codewords, :math:`D` is feature dimensions.)
        - Output: :math:`E\in\mathcal{R}^{B\times K\times D}`

    """ 
    def forward(self, A, R):
        if isinstance(A, tuple) or isinstance(A, list):
            # for self-parallel mode, please see encoding.nn
            return my_data_parallel(self, A, R)
        elif not isinstance(A, Variable):
            raise RuntimeError('unknown input type')
        return aggregateP(A, R)


class EncodingP(nn.Module):
    def __init__(self, D, K):
        super(EncodingP, self).__init__()
        # init codewords and smoothing factor
        self.D, self.K = D, K
        self.codewords = nn.Parameter(torch.Tensor(K, D), 
            requires_grad=True)
        self.scale = nn.Parameter(torch.Tensor(K), requires_grad=True) 
        self.reset_params()
        print('EncodingP is deprecated, please use Encoding.')
        
    def reset_params(self):
        std1 = 1./((self.K*self.D)**(1/2))
        std2 = 1./((self.K)**(1/2))
        self.codewords.data.uniform_(-std1, std1)
        self.scale.data.uniform_(-std2, std2)

    def forward(self, X):
        if isinstance(X, tuple) or isinstance(X, list):
            # for self-parallel mode, please see encoding.nn
            return my_data_parallel(self, X)
        elif not isinstance(X, Variable):
            raise RuntimeError('unknown input type')
        # input X is a 4D tensor
        assert(X.size(1)==self.D,"Encoding Layer wrong channels!")
        if X.dim() == 3:
            # BxDxN
            B, N, K, D = X.size(0), X.size(2), self.K, self.D
            X = X.transpose(1,2)
        elif X.dim() == 4:
            # BxDxHxW
            B, N, K, D = X.size(0), X.size(2)*X.size(3), self.K, self.D
            X = X.view(B,D,-1).transpose(1,2)
        else:
            raise RuntimeError('Encoding Layer unknown input dims!')
        # calculate residuals
        R = residual(X.contiguous(), self.codewords)
        # assignment weights
        A = assign(R, self.scale)
        # aggregate
        E = aggregateP(A, R)

        return E

    def __repr__(self):
        return self.__class__.__name__ + '(' \
            + 'N x ' + str(self.D) + '=>' + str(self.K) + 'x' \
            + str(self.D) + ')'