main.py 6.45 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
import time
import hydra
from omegaconf import OmegaConf

import torch
from torch_geometric.nn.conv.gcn_conv import gcn_norm

from torch_geometric_autoscale import (get_data, metis, permute,
                                       SubgraphLoader, EvalSubgraphLoader,
rusty1s's avatar
rusty1s committed
10
                                       models, compute_micro_f1, dropout)
rusty1s's avatar
rusty1s committed
11
12
13
14
15
from torch_geometric_autoscale.data import get_ppi

torch.manual_seed(123)


rusty1s's avatar
rusty1s committed
16
17
def mini_train(model, loader, criterion, optimizer, max_steps, grad_norm=None,
               edge_dropout=0.0):
rusty1s's avatar
rusty1s committed
18
19
20
    model.train()

    total_loss = total_examples = 0
rusty1s's avatar
rusty1s committed
21
    for i, (batch, batch_size, *args) in enumerate(loader):
rusty1s's avatar
rusty1s committed
22
23
24
25
26
27
28
29
        x = batch.x.to(model.device)
        adj_t = batch.adj_t.to(model.device)
        y = batch.y[:batch_size].to(model.device)
        train_mask = batch.train_mask[:batch_size].to(model.device)

        if train_mask.sum() == 0:
            continue

rusty1s's avatar
rusty1s committed
30
31
32
        # We make use of edge dropout on ogbn-products to avoid overfitting.
        adj_t = dropout(adj_t, p=edge_dropout)

rusty1s's avatar
rusty1s committed
33
        optimizer.zero_grad()
rusty1s's avatar
rusty1s committed
34
        out = model(x, adj_t, batch_size, *args)
rusty1s's avatar
rusty1s committed
35
36
37
38
39
40
41
42
43
        loss = criterion(out[train_mask], y[train_mask])
        loss.backward()
        if grad_norm is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm)
        optimizer.step()

        total_loss += float(loss) * int(train_mask.sum())
        total_examples += int(train_mask.sum())

rusty1s's avatar
rusty1s committed
44
        # We may abort after a fixed number of steps to refresh histories...
rusty1s's avatar
rusty1s committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        if (i + 1) >= max_steps and (i + 1) < len(loader):
            break

    return total_loss / total_examples


@torch.no_grad()
def full_test(model, data):
    model.eval()
    return model(data.x.to(model.device), data.adj_t.to(model.device)).cpu()


@torch.no_grad()
def mini_test(model, loader):
    model.eval()
    return model(loader=loader)


@hydra.main(config_path='conf', config_name='config')
def main(conf):
    conf.model.params = conf.model.params[conf.dataset.name]
    params = conf.model.params
    print(OmegaConf.to_yaml(conf))
rusty1s's avatar
rusty1s committed
68
69
70
71
    try:
        edge_dropout = params.edge_dropout
    except:  # noqa
        edge_dropout = 0.0
rusty1s's avatar
rusty1s committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    grad_norm = None if isinstance(params.grad_norm, str) else params.grad_norm

    device = f'cuda:{conf.device}' if torch.cuda.is_available() else 'cpu'

    t = time.perf_counter()
    print('Loading data...', end=' ', flush=True)
    data, in_channels, out_channels = get_data(conf.root, conf.dataset.name)
    print(f'Done! [{time.perf_counter() - t:.2f}s]')
    perm, ptr = metis(data.adj_t, num_parts=params.num_parts, log=True)
    data = permute(data, perm, log=True)

    if conf.model.loop:
        t = time.perf_counter()
        print('Adding self-loops...', end=' ', flush=True)
        data.adj_t = data.adj_t.set_diag()
        print(f'Done! [{time.perf_counter() - t:.2f}s]')
    if conf.model.norm:
        t = time.perf_counter()
        print('Normalizing data...', end=' ', flush=True)
        data.adj_t = gcn_norm(data.adj_t, add_self_loops=False)
        print(f'Done! [{time.perf_counter() - t:.2f}s]')

    if data.y.dim() == 1:
        criterion = torch.nn.CrossEntropyLoss()
    else:
        criterion = torch.nn.BCEWithLogitsLoss()

    train_loader = SubgraphLoader(data, ptr, batch_size=params.batch_size,
                                  shuffle=True, num_workers=params.num_workers,
                                  persistent_workers=params.num_workers > 0)

    eval_loader = EvalSubgraphLoader(data, ptr,
                                     batch_size=params['batch_size'])

    if conf.dataset.name == 'ppi':
        val_data, _, _ = get_ppi(conf.root, split='val')
        test_data, _, _ = get_ppi(conf.root, split='test')
        if conf.model.loop:
            val_data.adj_t = val_data.adj_t.set_diag()
            test_data.adj_t = test_data.adj_t.set_diag()
        if conf.model.norm:
            val_data.adj_t = gcn_norm(val_data.adj_t, add_self_loops=False)
            test_data.adj_t = gcn_norm(test_data.adj_t, add_self_loops=False)

    t = time.perf_counter()
    print('Calculating buffer size...', end=' ', flush=True)
rusty1s's avatar
doc  
rusty1s committed
118
119
    # We reserve a much larger buffer size than what is actually needed for
    # training in order to perform efficient history accesses during inference.
rusty1s's avatar
rusty1s committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    buffer_size = max([n_id.numel() for _, _, n_id, _, _ in eval_loader])
    print(f'Done! [{time.perf_counter() - t:.2f}s] -> {buffer_size}')

    kwargs = {}
    if conf.model.name[:3] == 'PNA':
        kwargs['deg'] = data.adj_t.storage.rowcount()

    GNN = getattr(models, conf.model.name)
    model = GNN(
        num_nodes=data.num_nodes,
        in_channels=in_channels,
        out_channels=out_channels,
        pool_size=params.pool_size,
        buffer_size=buffer_size,
        **params.architecture,
        **kwargs,
    ).to(device)

    optimizer = torch.optim.Adam([
        dict(params=model.reg_modules.parameters(),
             weight_decay=params.reg_weight_decay),
        dict(params=model.nonreg_modules.parameters(),
             weight_decay=params.nonreg_weight_decay)
    ], lr=params.lr)

    t = time.perf_counter()
    print('Fill history...', end=' ', flush=True)
    mini_test(model, eval_loader)
    print(f'Done! [{time.perf_counter() - t:.2f}s]')

    best_val_acc = test_acc = 0
    for epoch in range(1, params.epochs + 1):
        loss = mini_train(model, train_loader, criterion, optimizer,
rusty1s's avatar
rusty1s committed
153
                          params.max_steps, grad_norm, edge_dropout)
rusty1s's avatar
rusty1s committed
154
        out = mini_test(model, eval_loader)
rusty1s's avatar
rusty1s committed
155
        train_acc = compute_micro_f1(out, data.y, data.train_mask)
rusty1s's avatar
rusty1s committed
156
157

        if conf.dataset.name != 'ppi':
rusty1s's avatar
rusty1s committed
158
159
            val_acc = compute_micro_f1(out, data.y, data.val_mask)
            tmp_test_acc = compute_micro_f1(out, data.y, data.test_mask)
rusty1s's avatar
rusty1s committed
160
        else:
rusty1s's avatar
doc  
rusty1s committed
161
162
            # We need to perform inference on a different graph as PPI is an
            # inductive dataset.
rusty1s's avatar
rusty1s committed
163
164
165
            val_acc = compute_micro_f1(full_test(model, val_data), val_data.y)
            tmp_test_acc = compute_micro_f1(full_test(model, test_data),
                                            test_data.y)
rusty1s's avatar
rusty1s committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

        if val_acc > best_val_acc:
            best_val_acc = val_acc
            test_acc = tmp_test_acc
        if epoch % conf.log_every == 0:
            print(f'Epoch: {epoch:04d}, Loss: {loss:.4f}, '
                  f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, '
                  f'Test: {tmp_test_acc:.4f}, Final: {test_acc:.4f}')

    print('=========================')
    print(f'Val: {best_val_acc:.4f}, Test: {test_acc:.4f}')


if __name__ == "__main__":
    main()