main.py 5.83 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import time
import hydra
from omegaconf import OmegaConf

import torch
from torch_geometric.nn.conv.gcn_conv import gcn_norm

from torch_geometric_autoscale import (get_data, metis, permute,
                                       SubgraphLoader, EvalSubgraphLoader,
                                       models, compute_acc)
from torch_geometric_autoscale.data import get_ppi

torch.manual_seed(123)


def mini_train(model, loader, criterion, optimizer, max_steps, grad_norm=None):
    model.train()

    total_loss = total_examples = 0
    for i, (batch, batch_size, n_id, offset, count) in enumerate(loader):
        x = batch.x.to(model.device)
        adj_t = batch.adj_t.to(model.device)
        y = batch.y[:batch_size].to(model.device)
        train_mask = batch.train_mask[:batch_size].to(model.device)

        if train_mask.sum() == 0:
            continue

        optimizer.zero_grad()
        out = model(x, adj_t, batch_size, n_id, offset, count)
        loss = criterion(out[train_mask], y[train_mask])
        loss.backward()
        if grad_norm is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm)
        optimizer.step()

        total_loss += float(loss) * int(train_mask.sum())
        total_examples += int(train_mask.sum())

        if (i + 1) >= max_steps and (i + 1) < len(loader):
            break

    return total_loss / total_examples


@torch.no_grad()
def full_test(model, data):
    model.eval()
    return model(data.x.to(model.device), data.adj_t.to(model.device)).cpu()


@torch.no_grad()
def mini_test(model, loader):
    model.eval()
    return model(loader=loader)


@hydra.main(config_path='conf', config_name='config')
def main(conf):
    conf.model.params = conf.model.params[conf.dataset.name]
    params = conf.model.params
    print(OmegaConf.to_yaml(conf))
    grad_norm = None if isinstance(params.grad_norm, str) else params.grad_norm

    device = f'cuda:{conf.device}' if torch.cuda.is_available() else 'cpu'

    t = time.perf_counter()
    print('Loading data...', end=' ', flush=True)
    data, in_channels, out_channels = get_data(conf.root, conf.dataset.name)
    print(f'Done! [{time.perf_counter() - t:.2f}s]')
    perm, ptr = metis(data.adj_t, num_parts=params.num_parts, log=True)
    data = permute(data, perm, log=True)

    if conf.model.loop:
        t = time.perf_counter()
        print('Adding self-loops...', end=' ', flush=True)
        data.adj_t = data.adj_t.set_diag()
        print(f'Done! [{time.perf_counter() - t:.2f}s]')
    if conf.model.norm:
        t = time.perf_counter()
        print('Normalizing data...', end=' ', flush=True)
        data.adj_t = gcn_norm(data.adj_t, add_self_loops=False)
        print(f'Done! [{time.perf_counter() - t:.2f}s]')

    if data.y.dim() == 1:
        criterion = torch.nn.CrossEntropyLoss()
    else:
        criterion = torch.nn.BCEWithLogitsLoss()

    train_loader = SubgraphLoader(data, ptr, batch_size=params.batch_size,
                                  shuffle=True, num_workers=params.num_workers,
                                  persistent_workers=params.num_workers > 0)

    eval_loader = EvalSubgraphLoader(data, ptr,
                                     batch_size=params['batch_size'])

    if conf.dataset.name == 'ppi':
        val_data, _, _ = get_ppi(conf.root, split='val')
        test_data, _, _ = get_ppi(conf.root, split='test')
        if conf.model.loop:
            val_data.adj_t = val_data.adj_t.set_diag()
            test_data.adj_t = test_data.adj_t.set_diag()
        if conf.model.norm:
            val_data.adj_t = gcn_norm(val_data.adj_t, add_self_loops=False)
            test_data.adj_t = gcn_norm(test_data.adj_t, add_self_loops=False)

    t = time.perf_counter()
    print('Calculating buffer size...', end=' ', flush=True)
    buffer_size = max([n_id.numel() for _, _, n_id, _, _ in eval_loader])
    print(f'Done! [{time.perf_counter() - t:.2f}s] -> {buffer_size}')

    kwargs = {}
    if conf.model.name[:3] == 'PNA':
        kwargs['deg'] = data.adj_t.storage.rowcount()

    GNN = getattr(models, conf.model.name)
    model = GNN(
        num_nodes=data.num_nodes,
        in_channels=in_channels,
        out_channels=out_channels,
        pool_size=params.pool_size,
        buffer_size=buffer_size,
        **params.architecture,
        **kwargs,
    ).to(device)

    optimizer = torch.optim.Adam([
        dict(params=model.reg_modules.parameters(),
             weight_decay=params.reg_weight_decay),
        dict(params=model.nonreg_modules.parameters(),
             weight_decay=params.nonreg_weight_decay)
    ], lr=params.lr)

    t = time.perf_counter()
    print('Fill history...', end=' ', flush=True)
    mini_test(model, eval_loader)
    print(f'Done! [{time.perf_counter() - t:.2f}s]')

    best_val_acc = test_acc = 0
    for epoch in range(1, params.epochs + 1):
        loss = mini_train(model, train_loader, criterion, optimizer,
                          params.max_steps, grad_norm)
        out = mini_test(model, eval_loader)
        train_acc = compute_acc(out, data.y, data.train_mask)

        if conf.dataset.name != 'ppi':
            val_acc = compute_acc(out, data.y, data.val_mask)
            tmp_test_acc = compute_acc(out, data.y, data.test_mask)
        else:
            val_acc = compute_acc(full_test(model, val_data), val_data.y)
            tmp_test_acc = compute_acc(full_test(model, test_data),
                                       test_data.y)

        if val_acc > best_val_acc:
            best_val_acc = val_acc
            test_acc = tmp_test_acc
        if epoch % conf.log_every == 0:
            print(f'Epoch: {epoch:04d}, Loss: {loss:.4f}, '
                  f'Train: {train_acc:.4f}, Val: {val_acc:.4f}, '
                  f'Test: {tmp_test_acc:.4f}, Final: {test_acc:.4f}')

    print('=========================')
    print(f'Val: {best_val_acc:.4f}, Test: {test_acc:.4f}')


if __name__ == "__main__":
    main()