pna_jk.py 4.27 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from typing import Optional, List

import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import (ModuleList, Linear, BatchNorm1d, Sequential, ReLU,
                      Identity)
from torch_sparse import SparseTensor

from scaling_gnns.models.base2 import ScalableGNN
from scaling_gnns.models.pna import PNAConv


class PNA_JK(ScalableGNN):
    def __init__(self, num_nodes: int, in_channels: int, hidden_channels: int,
                 out_channels: int, num_layers: int, aggregators: List[int],
                 scalers: List[int], deg: Tensor, dropout: float = 0.0,
                 drop_input: bool = True, batch_norm: bool = False,
                 residual: bool = False, pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
        super(PNA_JK, self).__init__(num_nodes, hidden_channels, num_layers,
                                     pool_size, buffer_size, device)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_layers == num_layers
        self.dropout = dropout
        self.drop_input = drop_input
        self.batch_norm = batch_norm
        self.residual = residual

        self.lins = ModuleList()
        self.lins.append(
            Sequential(
                Linear(in_channels, hidden_channels),
                BatchNorm1d(hidden_channels) if batch_norm else Identity(),
                ReLU(inplace=True),
            ))
        self.lins.append(
            Linear((num_layers + 1) * hidden_channels, out_channels))

        self.convs = ModuleList()
        for _ in range(num_layers):
            conv = PNAConv(hidden_channels, hidden_channels,
                           aggregators=aggregators, scalers=scalers, deg=deg)
            self.convs.append(conv)

        self.bns = ModuleList()
        for _ in range(num_layers):
            bn = BatchNorm1d(hidden_channels)
            self.bns.append(bn)

    @property
    def reg_modules(self):
        return ModuleList(list(self.convs) + list(self.bns))

    @property
    def nonreg_modules(self):
        return self.lins

    def reset_parameters(self):
        super(PNA_JK, self).reset_parameters()
        for lin in self.lins:
            lin.reset_parameters()
        for conv in self.convs:
            conv.reset_parameters()
        for bn in self.bns:
            bn.reset_parameters()

    def forward(self, x: Tensor, adj_t: SparseTensor,
                batch_size: Optional[int] = None,
                n_id: Optional[Tensor] = None, offset: Optional[Tensor] = None,
                count: Optional[Tensor] = None) -> Tensor:

        if self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        x = self.lins[0](x)
        xs = [x[:adj_t.size(0)]]

        for conv, bn, hist in zip(self.convs[:-1], self.bns[:-1],
                                  self.histories):
            h = conv(x, adj_t)
            if self.batch_norm:
                h = bn(h)
            if self.residual:
                h += x[:h.size(0)]
            x = h.relu_()
            xs += [x]
            x = self.push_and_pull(hist, x, batch_size, n_id, offset, count)
            x = F.dropout(x, p=self.dropout, training=self.training)

        h = self.convs[-1](x, adj_t)
        if self.batch_norm:
            h = self.bns[-1](h)
        if self.residual:
            h += x[:h.size(0)]
        x = h.relu_()
        xs += [x]

        x = torch.cat(xs, dim=-1)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return self.lins[1](x)

    @torch.no_grad()
    def forward_layer(self, layer, x, adj_t, state):
        if layer == 0:
            if self.drop_input:
                x = F.dropout(x, p=self.dropout, training=self.training)

            x = self.lins[0](x)
            state['xs'] = [x[:adj_t.size(0)]]

        h = self.convs[layer](x, adj_t)
        if self.batch_norm:
            h = self.bns[layer](h)
        if self.residual:
            h += x[:h.size(0)]
        h = h.relu_()
        state['xs'] += [h]
        h = F.dropout(h, p=self.dropout, training=self.training)

        if layer == self.num_layers - 1:
            h = torch.cat(state['xs'], dim=-1)
            h = F.dropout(h, p=self.dropout, training=self.training)
            h = self.lins[1](h)

        return h