from typing import Optional, List import torch from torch import Tensor import torch.nn.functional as F from torch.nn import (ModuleList, Linear, BatchNorm1d, Sequential, ReLU, Identity) from torch_sparse import SparseTensor from scaling_gnns.models.base2 import ScalableGNN from scaling_gnns.models.pna import PNAConv class PNA_JK(ScalableGNN): def __init__(self, num_nodes: int, in_channels: int, hidden_channels: int, out_channels: int, num_layers: int, aggregators: List[int], scalers: List[int], deg: Tensor, dropout: float = 0.0, drop_input: bool = True, batch_norm: bool = False, residual: bool = False, pool_size: Optional[int] = None, buffer_size: Optional[int] = None, device=None): super(PNA_JK, self).__init__(num_nodes, hidden_channels, num_layers, pool_size, buffer_size, device) self.in_channels = in_channels self.out_channels = out_channels self.num_layers == num_layers self.dropout = dropout self.drop_input = drop_input self.batch_norm = batch_norm self.residual = residual self.lins = ModuleList() self.lins.append( Sequential( Linear(in_channels, hidden_channels), BatchNorm1d(hidden_channels) if batch_norm else Identity(), ReLU(inplace=True), )) self.lins.append( Linear((num_layers + 1) * hidden_channels, out_channels)) self.convs = ModuleList() for _ in range(num_layers): conv = PNAConv(hidden_channels, hidden_channels, aggregators=aggregators, scalers=scalers, deg=deg) self.convs.append(conv) self.bns = ModuleList() for _ in range(num_layers): bn = BatchNorm1d(hidden_channels) self.bns.append(bn) @property def reg_modules(self): return ModuleList(list(self.convs) + list(self.bns)) @property def nonreg_modules(self): return self.lins def reset_parameters(self): super(PNA_JK, self).reset_parameters() for lin in self.lins: lin.reset_parameters() for conv in self.convs: conv.reset_parameters() for bn in self.bns: bn.reset_parameters() def forward(self, x: Tensor, adj_t: SparseTensor, batch_size: Optional[int] = None, n_id: Optional[Tensor] = None, offset: Optional[Tensor] = None, count: Optional[Tensor] = None) -> Tensor: if self.drop_input: x = F.dropout(x, p=self.dropout, training=self.training) x = self.lins[0](x) xs = [x[:adj_t.size(0)]] for conv, bn, hist in zip(self.convs[:-1], self.bns[:-1], self.histories): h = conv(x, adj_t) if self.batch_norm: h = bn(h) if self.residual: h += x[:h.size(0)] x = h.relu_() xs += [x] x = self.push_and_pull(hist, x, batch_size, n_id, offset, count) x = F.dropout(x, p=self.dropout, training=self.training) h = self.convs[-1](x, adj_t) if self.batch_norm: h = self.bns[-1](h) if self.residual: h += x[:h.size(0)] x = h.relu_() xs += [x] x = torch.cat(xs, dim=-1) x = F.dropout(x, p=self.dropout, training=self.training) return self.lins[1](x) @torch.no_grad() def forward_layer(self, layer, x, adj_t, state): if layer == 0: if self.drop_input: x = F.dropout(x, p=self.dropout, training=self.training) x = self.lins[0](x) state['xs'] = [x[:adj_t.size(0)]] h = self.convs[layer](x, adj_t) if self.batch_norm: h = self.bns[layer](h) if self.residual: h += x[:h.size(0)] h = h.relu_() state['xs'] += [h] h = F.dropout(h, p=self.dropout, training=self.training) if layer == self.num_layers - 1: h = torch.cat(state['xs'], dim=-1) h = F.dropout(h, p=self.dropout, training=self.training) h = self.lins[1](h) return h