"x/kvcache/causal.go" did not exist on "34d0c55ea57e24d04b57e792f91a91eaa18ad9ce"
pool.py 4.99 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
from typing import Optional, Callable

import torch
from torch import Tensor
from torch.cuda import Stream

rusty1s's avatar
rusty1s committed
7
8
9
synchronize = torch.ops.torch_geometric_autoscale.synchronize
read_async = torch.ops.torch_geometric_autoscale.read_async
write_async = torch.ops.torch_geometric_autoscale.write_async
rusty1s's avatar
rusty1s committed
10
11
12
13
14
15
16
17


class AsyncIOPool(torch.nn.Module):
    def __init__(self, pool_size: int, buffer_size: int, embedding_dim: int):
        super(AsyncIOPool, self).__init__()

        self.pool_size = pool_size
        self.buffer_size = buffer_size
rusty1s's avatar
rusty1s committed
18
        self.embedding_dim = embedding_dim
rusty1s's avatar
rusty1s committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

        self._device = torch.device('cpu')
        self._pull_queue = []
        self._push_cache = [None] * pool_size
        self._push_streams = [None] * pool_size
        self._pull_streams = [None] * pool_size
        self._cpu_buffers = [None] * pool_size
        self._cuda_buffers = [None] * pool_size
        self._pull_index = -1
        self._push_index = -1

    def _apply(self, fn: Callable) -> None:
        self._device = fn(torch.zeros(1)).device
        return self

    def _pull_stream(self, idx: int) -> Stream:
        if self._pull_streams[idx] is None:
            assert str(self._device)[:4] == 'cuda'
            self._pull_streams[idx] = torch.cuda.Stream(self._device)
        return self._pull_streams[idx]

    def _push_stream(self, idx: int) -> Stream:
        if self._push_streams[idx] is None:
            assert str(self._device)[:4] == 'cuda'
            self._push_streams[idx] = torch.cuda.Stream(self._device)
        return self._push_streams[idx]

    def _cpu_buffer(self, idx: int) -> Tensor:
        if self._cpu_buffers[idx] is None:
            self._cpu_buffers[idx] = torch.empty(self.buffer_size,
                                                 self.embedding_dim,
                                                 pin_memory=True)
        return self._cpu_buffers[idx]

    def _cuda_buffer(self, idx: int) -> Tensor:
        if self._cuda_buffers[idx] is None:
            assert str(self._device)[:4] == 'cuda'
            self._cuda_buffers[idx] = torch.empty(self.buffer_size,
                                                  self.embedding_dim,
                                                  device=self._device)
        return self._cuda_buffers[idx]

    @torch.no_grad()
    def async_pull(self, src: Tensor, offset: Optional[Tensor],
                   count: Optional[Tensor], index: Tensor) -> None:
rusty1s's avatar
rusty1s committed
64
        # Start pulling `src` at ([offset, count] and index positions:
rusty1s's avatar
rusty1s committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        self._pull_index = (self._pull_index + 1) % self.pool_size
        data = (self._pull_index, src, offset, count, index)
        self._pull_queue.append(data)
        if len(self._pull_queue) <= self.pool_size:
            self._async_pull(self._pull_index, src, offset, count, index)

    @torch.no_grad()
    def _async_pull(self, idx: int, src: Tensor, offset: Optional[Tensor],
                    count: Optional[Tensor], index: Tensor) -> None:
        with torch.cuda.stream(self._pull_stream(idx)):
            read_async(src, offset, count, index, self._cuda_buffer(idx),
                       self._cpu_buffer(idx))

    @torch.no_grad()
    def synchronize_pull(self) -> Tensor:
rusty1s's avatar
rusty1s committed
80
        # Synchronize the next pull command:
rusty1s's avatar
rusty1s committed
81
82
83
84
85
86
87
        idx = self._pull_queue[0][0]
        synchronize()
        torch.cuda.synchronize(self._pull_stream(idx))
        return self._cuda_buffer(idx)

    @torch.no_grad()
    def free_pull(self) -> None:
rusty1s's avatar
rusty1s committed
88
        # Free the buffer space and start pulling from remaining queue:
rusty1s's avatar
rusty1s committed
89
90
91
92
93
        self._pull_queue.pop(0)
        if len(self._pull_queue) >= self.pool_size:
            data = self._pull_queue[self.pool_size - 1]
            idx, src, offset, count, index = data
            self._async_pull(idx, src, offset, count, index)
rusty1s's avatar
rusty1s committed
94
        elif len(self._pull_queue) == 0:
rusty1s's avatar
rusty1s committed
95
96
97
98
99
            self._pull_index = -1

    @torch.no_grad()
    def async_push(self, src: Tensor, offset: Tensor, count: Tensor,
                   dst: Tensor) -> None:
rusty1s's avatar
rusty1s committed
100
        # Start pushing `src` to ([offset, count] and index positions to `dst`:
rusty1s's avatar
rusty1s committed
101
102
103
104
105
106
107
108
        self._push_index = (self._push_index + 1) % self.pool_size
        self.synchronize_push(self._push_index)
        self._push_cache[self._push_index] = src
        with torch.cuda.stream(self._push_stream(self._push_index)):
            write_async(src, offset, count, dst)

    @torch.no_grad()
    def synchronize_push(self, idx: Optional[int] = None) -> None:
rusty1s's avatar
rusty1s committed
109
        # Synchronize the push command of stream `idx` or all commands:
rusty1s's avatar
rusty1s committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if idx is None:
            for idx in range(self.pool_size):
                self.synchronize_push(idx)
            self._push_index = -1
        else:
            torch.cuda.synchronize(self._push_stream(idx))
            self._push_cache[idx] = None

    def forward(self, *args, **kwargs):
        """"""
        raise NotImplementedError

    def __repr__(self):
        return (f'{self.__class__.__name__}(pool_size={self.pool_size}, '
                f'buffer_size={self.buffer_size}, '
                f'embedding_dim={self.embedding_dim}, '
                f'device={self._device})')