pool.py 4.62 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from typing import Optional, Callable

import torch
from torch import Tensor
from torch.cuda import Stream

synchronize = torch.ops.scaling_gnns.synchronize
read_async = torch.ops.scaling_gnns.read_async
write_async = torch.ops.scaling_gnns.write_async


class AsyncIOPool(torch.nn.Module):
    def __init__(self, pool_size: int, buffer_size: int, embedding_dim: int):
        super(AsyncIOPool, self).__init__()

        self.pool_size = pool_size
        self.embedding_dim = embedding_dim
        self.buffer_size = buffer_size

        self._device = torch.device('cpu')
        self._pull_queue = []
        self._push_cache = [None] * pool_size
        self._push_streams = [None] * pool_size
        self._pull_streams = [None] * pool_size
        self._cpu_buffers = [None] * pool_size
        self._cuda_buffers = [None] * pool_size
        self._pull_index = -1
        self._push_index = -1

    def _apply(self, fn: Callable) -> None:
        self._device = fn(torch.zeros(1)).device
        return self

    def _pull_stream(self, idx: int) -> Stream:
        if self._pull_streams[idx] is None:
            assert str(self._device)[:4] == 'cuda'
            self._pull_streams[idx] = torch.cuda.Stream(self._device)
        return self._pull_streams[idx]

    def _push_stream(self, idx: int) -> Stream:
        if self._push_streams[idx] is None:
            assert str(self._device)[:4] == 'cuda'
            self._push_streams[idx] = torch.cuda.Stream(self._device)
        return self._push_streams[idx]

    def _cpu_buffer(self, idx: int) -> Tensor:
        if self._cpu_buffers[idx] is None:
            self._cpu_buffers[idx] = torch.empty(self.buffer_size,
                                                 self.embedding_dim,
                                                 pin_memory=True)
        return self._cpu_buffers[idx]

    def _cuda_buffer(self, idx: int) -> Tensor:
        if self._cuda_buffers[idx] is None:
            assert str(self._device)[:4] == 'cuda'
            self._cuda_buffers[idx] = torch.empty(self.buffer_size,
                                                  self.embedding_dim,
                                                  device=self._device)
        return self._cuda_buffers[idx]

    @torch.no_grad()
    def async_pull(self, src: Tensor, offset: Optional[Tensor],
                   count: Optional[Tensor], index: Tensor) -> None:
        self._pull_index = (self._pull_index + 1) % self.pool_size
        data = (self._pull_index, src, offset, count, index)
        self._pull_queue.append(data)
        if len(self._pull_queue) <= self.pool_size:
            self._async_pull(self._pull_index, src, offset, count, index)

    @torch.no_grad()
    def _async_pull(self, idx: int, src: Tensor, offset: Optional[Tensor],
                    count: Optional[Tensor], index: Tensor) -> None:
        with torch.cuda.stream(self._pull_stream(idx)):
            read_async(src, offset, count, index, self._cuda_buffer(idx),
                       self._cpu_buffer(idx))

    @torch.no_grad()
    def synchronize_pull(self) -> Tensor:
        idx = self._pull_queue[0][0]
        synchronize()
        torch.cuda.synchronize(self._pull_stream(idx))
        return self._cuda_buffer(idx)

    @torch.no_grad()
    def free_pull(self) -> None:
        self._pull_queue.pop(0)
        if len(self._pull_queue) >= self.pool_size:
            data = self._pull_queue[self.pool_size - 1]
            idx, src, offset, count, index = data
            self._async_pull(idx, src, offset, count, index)
        if len(self._pull_queue) == 0:
            self._pull_index = -1

    @torch.no_grad()
    def async_push(self, src: Tensor, offset: Tensor, count: Tensor,
                   dst: Tensor) -> None:
        self._push_index = (self._push_index + 1) % self.pool_size
        self.synchronize_push(self._push_index)
        self._push_cache[self._push_index] = src
        with torch.cuda.stream(self._push_stream(self._push_index)):
            write_async(src, offset, count, dst)

    @torch.no_grad()
    def synchronize_push(self, idx: Optional[int] = None) -> None:
        if idx is None:
            for idx in range(self.pool_size):
                self.synchronize_push(idx)
            self._push_index = -1
        else:
            torch.cuda.synchronize(self._push_stream(idx))
            self._push_cache[idx] = None

    def forward(self, *args, **kwargs):
        """"""
        raise NotImplementedError

    def __repr__(self):
        return (f'{self.__class__.__name__}(pool_size={self.pool_size}, '
                f'buffer_size={self.buffer_size}, '
                f'embedding_dim={self.embedding_dim}, '
                f'device={self._device})')