pna_jk.py 4.22 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
from typing import Optional, List

import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import (ModuleList, Linear, BatchNorm1d, Sequential, ReLU,
                      Identity)
from torch_sparse import SparseTensor

rusty1s's avatar
rusty1s committed
10
11
from torch_geometric_autoscale.models import ScalableGNN
from torch_geometric_autoscale.models.pna import PNAConv
rusty1s's avatar
rusty1s committed
12
13
14
15
16
17
18
19
20


class PNA_JK(ScalableGNN):
    def __init__(self, num_nodes: int, in_channels: int, hidden_channels: int,
                 out_channels: int, num_layers: int, aggregators: List[int],
                 scalers: List[int], deg: Tensor, dropout: float = 0.0,
                 drop_input: bool = True, batch_norm: bool = False,
                 residual: bool = False, pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
rusty1s's avatar
rusty1s committed
21
22
        super().__init__(num_nodes, hidden_channels, num_layers, pool_size,
                         buffer_size, device)
rusty1s's avatar
rusty1s committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_layers == num_layers
        self.dropout = dropout
        self.drop_input = drop_input
        self.batch_norm = batch_norm
        self.residual = residual

        self.lins = ModuleList()
        self.lins.append(
            Sequential(
                Linear(in_channels, hidden_channels),
                BatchNorm1d(hidden_channels) if batch_norm else Identity(),
                ReLU(inplace=True),
            ))
        self.lins.append(
            Linear((num_layers + 1) * hidden_channels, out_channels))

        self.convs = ModuleList()
        for _ in range(num_layers):
            conv = PNAConv(hidden_channels, hidden_channels,
                           aggregators=aggregators, scalers=scalers, deg=deg)
            self.convs.append(conv)

        self.bns = ModuleList()
        for _ in range(num_layers):
            bn = BatchNorm1d(hidden_channels)
            self.bns.append(bn)

    @property
    def reg_modules(self):
        return ModuleList(list(self.convs) + list(self.bns))

    @property
    def nonreg_modules(self):
        return self.lins

    def reset_parameters(self):
rusty1s's avatar
rusty1s committed
62
        super().reset_parameters()
rusty1s's avatar
rusty1s committed
63
64
65
66
67
68
69
        for lin in self.lins:
            lin.reset_parameters()
        for conv in self.convs:
            conv.reset_parameters()
        for bn in self.bns:
            bn.reset_parameters()

rusty1s's avatar
rusty1s committed
70
    def forward(self, x: Tensor, adj_t: SparseTensor, *args) -> Tensor:
rusty1s's avatar
rusty1s committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        if self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        x = self.lins[0](x)
        xs = [x[:adj_t.size(0)]]

        for conv, bn, hist in zip(self.convs[:-1], self.bns[:-1],
                                  self.histories):
            h = conv(x, adj_t)
            if self.batch_norm:
                h = bn(h)
            if self.residual:
                h += x[:h.size(0)]
            x = h.relu_()
            xs += [x]
rusty1s's avatar
rusty1s committed
86
            x = self.push_and_pull(hist, x, *args)
rusty1s's avatar
rusty1s committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            x = F.dropout(x, p=self.dropout, training=self.training)

        h = self.convs[-1](x, adj_t)
        if self.batch_norm:
            h = self.bns[-1](h)
        if self.residual:
            h += x[:h.size(0)]
        x = h.relu_()
        xs += [x]

        x = torch.cat(xs, dim=-1)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return self.lins[1](x)

    @torch.no_grad()
    def forward_layer(self, layer, x, adj_t, state):
rusty1s's avatar
rusty1s committed
103
104
        # We keep the skip connections in GPU memory for now. If one encounters
        # GPU memory problems, it is advised to push `state['xs']` to the CPU.
rusty1s's avatar
rusty1s committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        if layer == 0:
            if self.drop_input:
                x = F.dropout(x, p=self.dropout, training=self.training)

            x = self.lins[0](x)
            state['xs'] = [x[:adj_t.size(0)]]

        h = self.convs[layer](x, adj_t)
        if self.batch_norm:
            h = self.bns[layer](h)
        if self.residual:
            h += x[:h.size(0)]
        h = h.relu_()
        state['xs'] += [h]
        h = F.dropout(h, p=self.dropout, training=self.training)

        if layer == self.num_layers - 1:
            h = torch.cat(state['xs'], dim=-1)
            h = F.dropout(h, p=self.dropout, training=self.training)
            h = self.lins[1](h)

        return h