pna.py 5.1 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
from itertools import product
from typing import Optional, List

import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import ModuleList, Linear, BatchNorm1d
from torch_sparse import SparseTensor
from torch_geometric.nn import MessagePassing

rusty1s's avatar
rusty1s committed
11
from torch_geometric_autoscale.models import ScalableGNN
rusty1s's avatar
rusty1s committed
12
13
14
15
16
17
18
19

EPS = 1e-5


class PNAConv(MessagePassing):
    def __init__(self, in_channels: int, out_channels: int,
                 aggregators: List[str], scalers: List[str], deg: Tensor,
                 **kwargs):
rusty1s's avatar
rusty1s committed
20
        super().__init__(aggr=None, **kwargs)
rusty1s's avatar
rusty1s committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.aggregators = aggregators
        self.scalers = scalers

        deg = deg.to(torch.float)
        self.avg_deg = {
            'lin': deg.mean().item(),
            'log': (deg + 1).log().mean().item(),
        }

        self.pre_lins = torch.nn.ModuleList([
            Linear(in_channels, out_channels)
            for _ in range(len(aggregators) * len(scalers))
        ])
        self.post_lins = torch.nn.ModuleList([
            Linear(out_channels, out_channels)
            for _ in range(len(aggregators) * len(scalers))
        ])

        self.lin = Linear(in_channels, out_channels)

        self.reset_parameters()

    def reset_parameters(self):
        for lin in self.pre_lins:
            lin.reset_parameters()
        for lin in self.post_lins:
            lin.reset_parameters()
        self.lin.reset_parameters()

    def forward(self, x: Tensor, adj_t):
        out = self.propagate(adj_t, x=x)
        out += self.lin(x)[:out.size(0)]
        return out

    def message_and_aggregate(self, adj_t: SparseTensor, x: Tensor) -> Tensor:
        deg = adj_t.storage.rowcount().to(x.dtype).view(-1, 1)

        out = 0
        for (aggr, scaler), pre_lin, post_lin in zip(
                product(self.aggregators, self.scalers), self.pre_lins,
                self.post_lins):
            h = pre_lin(x).relu_()
            h = adj_t.matmul(h, reduce=aggr)
            h = post_lin(h)
            if scaler == 'amplification':
                h *= (deg + 1).log() / self.avg_deg['log']
            elif scaler == 'attenuation':
                h *= self.avg_deg['log'] / ((deg + 1).log() + EPS)

            out += h

        return out


class PNA(ScalableGNN):
    def __init__(self, num_nodes: int, in_channels: int, hidden_channels: int,
                 out_channels: int, num_layers: int, aggregators: List[int],
                 scalers: List[int], deg: Tensor, dropout: float = 0.0,
                 drop_input: bool = True, batch_norm: bool = False,
                 residual: bool = False, pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
rusty1s's avatar
rusty1s committed
85
86
        super().__init__(num_nodes, hidden_channels, num_layers, pool_size,
                         buffer_size, device)
rusty1s's avatar
rusty1s committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.dropout = dropout
        self.drop_input = drop_input
        self.batch_norm = batch_norm
        self.residual = residual

        self.convs = ModuleList()
        for i in range(num_layers):
            in_dim = in_channels if i == 0 else hidden_channels
            out_dim = out_channels if i == num_layers - 1 else hidden_channels
            conv = PNAConv(in_dim, out_dim, aggregators=aggregators,
                           scalers=scalers, deg=deg)
            self.convs.append(conv)

        self.bns = ModuleList()
        for i in range(num_layers - 1):
            bn = BatchNorm1d(hidden_channels)
            self.bns.append(bn)

    @property
    def reg_modules(self):
        return ModuleList(list(self.convs[:-1]) + list(self.bns))

    @property
    def nonreg_modules(self):
        return self.convs[-1:]

    def reset_parameters(self):
rusty1s's avatar
rusty1s committed
117
        super().reset_parameters()
rusty1s's avatar
rusty1s committed
118
119
120
121
122
        for conv in self.convs:
            conv.reset_parameters()
        for bn in self.bns:
            bn.reset_parameters()

rusty1s's avatar
rusty1s committed
123
    def forward(self, x: Tensor, adj_t: SparseTensor, *args) -> Tensor:
rusty1s's avatar
rusty1s committed
124
125
126
127
128
129
130
131
132
133
        if self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        for conv, bn, hist in zip(self.convs[:-1], self.bns, self.histories):
            h = conv(x, adj_t)
            if self.batch_norm:
                h = bn(h)
            if self.residual and h.size(-1) == x.size(-1):
                h += x[:h.size(0)]
            x = h.relu_()
rusty1s's avatar
rusty1s committed
134
            x = self.push_and_pull(hist, x, *args)
rusty1s's avatar
rusty1s committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            x = F.dropout(x, p=self.dropout, training=self.training)

        x = self.convs[-1](x, adj_t)
        return x

    @torch.no_grad()
    def forward_layer(self, layer, x, adj_t, state):
        if layer == 0 and self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        h = self.convs[layer](x, adj_t)
        if layer < self.num_layers - 1:
            if self.batch_norm:
                h = self.bns[layer](h)
            if self.residual and h.size(-1) == x.size(-1):
                h += x[:h.size(0)]
            h = h.relu_()
            h = F.dropout(h, p=self.dropout, training=self.training)

        return h