pna.py 5.33 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from itertools import product
from typing import Optional, List

import torch
from torch import Tensor
import torch.nn.functional as F
from torch.nn import ModuleList, Linear, BatchNorm1d
from torch_sparse import SparseTensor
from torch_geometric.nn import MessagePassing

from scaling_gnns.models.base2 import ScalableGNN

EPS = 1e-5


class PNAConv(MessagePassing):
    def __init__(self, in_channels: int, out_channels: int,
                 aggregators: List[str], scalers: List[str], deg: Tensor,
                 **kwargs):

        super(PNAConv, self).__init__(aggr=None, **kwargs)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.aggregators = aggregators
        self.scalers = scalers

        deg = deg.to(torch.float)
        self.avg_deg = {
            'lin': deg.mean().item(),
            'log': (deg + 1).log().mean().item(),
        }

        self.pre_lins = torch.nn.ModuleList([
            Linear(in_channels, out_channels)
            for _ in range(len(aggregators) * len(scalers))
        ])
        self.post_lins = torch.nn.ModuleList([
            Linear(out_channels, out_channels)
            for _ in range(len(aggregators) * len(scalers))
        ])

        self.lin = Linear(in_channels, out_channels)

        self.reset_parameters()

    def reset_parameters(self):
        for lin in self.pre_lins:
            lin.reset_parameters()
        for lin in self.post_lins:
            lin.reset_parameters()
        self.lin.reset_parameters()

    def forward(self, x: Tensor, adj_t):
        out = self.propagate(adj_t, x=x)
        out += self.lin(x)[:out.size(0)]
        return out

    def message_and_aggregate(self, adj_t: SparseTensor, x: Tensor) -> Tensor:
        deg = adj_t.storage.rowcount().to(x.dtype).view(-1, 1)

        out = 0
        for (aggr, scaler), pre_lin, post_lin in zip(
                product(self.aggregators, self.scalers), self.pre_lins,
                self.post_lins):
            h = pre_lin(x).relu_()
            h = adj_t.matmul(h, reduce=aggr)
            h = post_lin(h)
            if scaler == 'amplification':
                h *= (deg + 1).log() / self.avg_deg['log']
            elif scaler == 'attenuation':
                h *= self.avg_deg['log'] / ((deg + 1).log() + EPS)

            out += h

        return out


class PNA(ScalableGNN):
    def __init__(self, num_nodes: int, in_channels: int, hidden_channels: int,
                 out_channels: int, num_layers: int, aggregators: List[int],
                 scalers: List[int], deg: Tensor, dropout: float = 0.0,
                 drop_input: bool = True, batch_norm: bool = False,
                 residual: bool = False, pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
        super(PNA, self).__init__(num_nodes, hidden_channels, num_layers,
                                  pool_size, buffer_size, device)

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.dropout = dropout
        self.drop_input = drop_input
        self.batch_norm = batch_norm
        self.residual = residual

        self.convs = ModuleList()
        for i in range(num_layers):
            in_dim = in_channels if i == 0 else hidden_channels
            out_dim = out_channels if i == num_layers - 1 else hidden_channels
            conv = PNAConv(in_dim, out_dim, aggregators=aggregators,
                           scalers=scalers, deg=deg)
            self.convs.append(conv)

        self.bns = ModuleList()
        for i in range(num_layers - 1):
            bn = BatchNorm1d(hidden_channels)
            self.bns.append(bn)

    @property
    def reg_modules(self):
        return ModuleList(list(self.convs[:-1]) + list(self.bns))

    @property
    def nonreg_modules(self):
        return self.convs[-1:]

    def reset_parameters(self):
        super(PNA, self).reset_parameters()
        for conv in self.convs:
            conv.reset_parameters()
        for bn in self.bns:
            bn.reset_parameters()

    def forward(self, x: Tensor, adj_t: SparseTensor,
                batch_size: Optional[int] = None,
                n_id: Optional[Tensor] = None, offset: Optional[Tensor] = None,
                count: Optional[Tensor] = None) -> Tensor:

        if self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        for conv, bn, hist in zip(self.convs[:-1], self.bns, self.histories):
            h = conv(x, adj_t)
            if self.batch_norm:
                h = bn(h)
            if self.residual and h.size(-1) == x.size(-1):
                h += x[:h.size(0)]
            x = h.relu_()
            x = self.push_and_pull(hist, x, batch_size, n_id, offset, count)
            x = F.dropout(x, p=self.dropout, training=self.training)

        x = self.convs[-1](x, adj_t)
        return x

    @torch.no_grad()
    def forward_layer(self, layer, x, adj_t, state):
        if layer == 0 and self.drop_input:
            x = F.dropout(x, p=self.dropout, training=self.training)

        h = self.convs[layer](x, adj_t)
        if layer < self.num_layers - 1:
            if self.batch_norm:
                h = self.bns[layer](h)
            if self.residual and h.size(-1) == x.size(-1):
                h += x[:h.size(0)]
            h = h.relu_()
            h = F.dropout(h, p=self.dropout, training=self.training)

        return h