main.py 3.84 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
import hydra
from tqdm import tqdm
from omegaconf import OmegaConf
rusty1s's avatar
rusty1s committed
4

rusty1s's avatar
rusty1s committed
5
6
7
import torch
from torch_geometric.nn.conv.gcn_conv import gcn_norm

rusty1s's avatar
rusty1s committed
8
9
from torch_geometric_autoscale import (get_data, metis, permute,
                                       SubgraphLoader, models, compute_acc)
rusty1s's avatar
rusty1s committed
10
11
12
13
14

torch.manual_seed(123)
criterion = torch.nn.CrossEntropyLoss()


rusty1s's avatar
rusty1s committed
15
def train(run, model, loader, optimizer, grad_norm=None):
rusty1s's avatar
rusty1s committed
16
17
18
    model.train()

    total_loss = total_examples = 0
rusty1s's avatar
rusty1s committed
19
20
21
    for batch, batch_size, n_id, _, _ in loader:
        batch = batch.to(model.device)
        n_id = n_id.to(model.device)
rusty1s's avatar
rusty1s committed
22

rusty1s's avatar
rusty1s committed
23
24
        mask = batch.train_mask[:batch_size]
        mask = mask[:, run] if mask.dim() == 2 else mask
rusty1s's avatar
rusty1s committed
25
26
27
28
        if mask.sum() == 0:
            continue

        optimizer.zero_grad()
rusty1s's avatar
rusty1s committed
29
30
        out = model(batch.x, batch.adj_t, batch_size, n_id)
        loss = criterion(out[mask], batch.y[:batch_size][mask])
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38
39
40
41
42
        loss.backward()
        if grad_norm is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm)
        optimizer.step()

        total_loss += float(loss) * int(mask.sum())
        total_examples += int(mask.sum())

    return total_loss / total_examples


@torch.no_grad()
rusty1s's avatar
rusty1s committed
43
def test(run, model, data):
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    model.eval()

    val_mask = data.val_mask
    val_mask = val_mask[:, run] if val_mask.dim() == 2 else val_mask

    test_mask = data.test_mask
    test_mask = test_mask[:, run] if test_mask.dim() == 2 else test_mask

    out = model(data.x, data.adj_t)
    val_acc = compute_acc(out, data.y, val_mask)
    test_acc = compute_acc(out, data.y, test_mask)

    return val_acc, test_acc


@hydra.main(config_path='conf', config_name='config')
def main(conf):
    model_name, dataset_name = conf.model.name, conf.dataset.name
    conf.model.params = conf.model.params[dataset_name]
    params = conf.model.params
    print(OmegaConf.to_yaml(conf))
    if isinstance(params.grad_norm, str):
        params.grad_norm = None

    device = f'cuda:{conf.device}' if torch.cuda.is_available() else 'cpu'

    data, in_channels, out_channels = get_data(conf.root, dataset_name)
    if conf.model.norm:
        data.adj_t = gcn_norm(data.adj_t)
    elif conf.model.loop:
        data.adj_t = data.adj_t.set_diag()

rusty1s's avatar
rusty1s committed
76
77
78
79
80
81
    perm, ptr = metis(data.adj_t, num_parts=params.num_parts, log=True)
    data = permute(data, perm, log=True)

    loader = SubgraphLoader(data, ptr, batch_size=params.batch_size,
                            shuffle=True, num_workers=params.num_workers,
                            persistent_workers=params.num_workers > 0)
rusty1s's avatar
rusty1s committed
82

rusty1s's avatar
rusty1s committed
83
    data = data.clone().to(device)  # Let's just store all data on GPU...
rusty1s's avatar
rusty1s committed
84
85
86
87
88
89

    GNN = getattr(models, model_name)
    model = GNN(
        num_nodes=data.num_nodes,
        in_channels=in_channels,
        out_channels=out_channels,
rusty1s's avatar
rusty1s committed
90
        device=device,  # Put histories on GPU.
rusty1s's avatar
rusty1s committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        **params.architecture,
    ).to(device)

    results = torch.empty(params.runs)
    pbar = tqdm(total=params.runs * params.epochs)
    for run in range(params.runs):
        model.reset_parameters()
        optimizer = torch.optim.Adam([
            dict(params=model.reg_modules.parameters(),
                 weight_decay=params.reg_weight_decay),
            dict(params=model.nonreg_modules.parameters(),
                 weight_decay=params.nonreg_weight_decay)
        ], lr=params.lr)

rusty1s's avatar
rusty1s committed
105
        test(0, model, data)  # Fill history.
rusty1s's avatar
rusty1s committed
106
107
108

        best_val_acc = 0
        for epoch in range(params.epochs):
rusty1s's avatar
rusty1s committed
109
110
            train(run, model, loader, optimizer, params.grad_norm)
            val_acc, test_acc = test(run, model, data)
rusty1s's avatar
rusty1s committed
111
112
113
114
115
116
117
118
119
120
121
122
            if val_acc > best_val_acc:
                best_val_acc = val_acc
                results[run] = test_acc

            pbar.set_description(f'Mini Acc: {100 * results[run]:.2f}')
            pbar.update(1)
    pbar.close()
    print(f'Mini Acc: {100 * results.mean():.2f} ± {100 * results.std():.2f}')


if __name__ == "__main__":
    main()