main.py 3.81 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import hydra
from tqdm import tqdm
from omegaconf import OmegaConf
import torch
from torch_geometric.nn.conv.gcn_conv import gcn_norm

from scaling_gnns import get_data, models, SubgraphLoader, compute_acc

torch.manual_seed(123)
criterion = torch.nn.CrossEntropyLoss()


def train(run, data, model, loader, optimizer, grad_norm=None):
    model.train()

    train_mask = data.train_mask
    train_mask = train_mask[:, run] if train_mask.dim() == 2 else train_mask

    total_loss = total_examples = 0
    for info in loader:
        info = info.to(model.device)
        batch_size, n_id, adj_t, e_id = info

        y = data.y[n_id[:batch_size]]
        mask = train_mask[n_id[:batch_size]]

        if mask.sum() == 0:
            continue

        optimizer.zero_grad()
        out = model(data.x[n_id], adj_t, batch_size, n_id)
        loss = criterion(out[mask], y[mask])
        loss.backward()
        if grad_norm is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm)
        optimizer.step()

        total_loss += float(loss) * int(mask.sum())
        total_examples += int(mask.sum())

    return total_loss / total_examples


@torch.no_grad()
def test(run, data, model):
    model.eval()

    val_mask = data.val_mask
    val_mask = val_mask[:, run] if val_mask.dim() == 2 else val_mask

    test_mask = data.test_mask
    test_mask = test_mask[:, run] if test_mask.dim() == 2 else test_mask

    out = model(data.x, data.adj_t)
    val_acc = compute_acc(out, data.y, val_mask)
    test_acc = compute_acc(out, data.y, test_mask)

    return val_acc, test_acc


@hydra.main(config_path='conf', config_name='config')
def main(conf):
    model_name, dataset_name = conf.model.name, conf.dataset.name
    conf.model.params = conf.model.params[dataset_name]
    params = conf.model.params
    print(OmegaConf.to_yaml(conf))
    if isinstance(params.grad_norm, str):
        params.grad_norm = None

    device = f'cuda:{conf.device}' if torch.cuda.is_available() else 'cpu'

    data, in_channels, out_channels = get_data(conf.root, dataset_name)
    if conf.model.norm:
        data.adj_t = gcn_norm(data.adj_t)
    elif conf.model.loop:
        data.adj_t = data.adj_t.set_diag()

    loader = SubgraphLoader(
        data.adj_t,
        batch_size=params.batch_size,
        use_metis=True,
        num_parts=params.num_parts,
        shuffle=True,
        num_workers=params.num_workers,
        path=f'../../../metis/{model_name.lower()}_{dataset_name.lower()}',
        log=False,
    )

    data = data.to(device)

    GNN = getattr(models, model_name)
    model = GNN(
        num_nodes=data.num_nodes,
        in_channels=in_channels,
        out_channels=out_channels,
        device=device,
        **params.architecture,
    ).to(device)

    results = torch.empty(params.runs)
    pbar = tqdm(total=params.runs * params.epochs)
    for run in range(params.runs):
        model.reset_parameters()
        optimizer = torch.optim.Adam([
            dict(params=model.reg_modules.parameters(),
                 weight_decay=params.reg_weight_decay),
            dict(params=model.nonreg_modules.parameters(),
                 weight_decay=params.nonreg_weight_decay)
        ], lr=params.lr)

        with torch.no_grad():  # Fill history.
            model.eval()
            model(data.x, data.adj_t)

        best_val_acc = 0
        for epoch in range(params.epochs):
            train(run, data, model, loader, optimizer, params.grad_norm)
            val_acc, test_acc = test(run, data, model)
            if val_acc > best_val_acc:
                best_val_acc = val_acc
                results[run] = test_acc

            pbar.set_description(f'Mini Acc: {100 * results[run]:.2f}')
            pbar.update(1)
    pbar.close()
    print(f'Mini Acc: {100 * results.mean():.2f} ± {100 * results.std():.2f}')


if __name__ == "__main__":
    main()