eval_subjective_alignbench.py 2.59 KB
Newer Older
1
from mmengine.config import read_base
2

3
with read_base():
4
    from .datasets.subjective.alignbench.alignbench_judgeby_critiquellm import subjective_datasets
5

bittersweet1999's avatar
bittersweet1999 committed
6
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
7
from opencompass.models.openai_api import OpenAIAllesAPIN
8
from opencompass.partitioners import NaivePartitioner, SizePartitioner
9
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
10
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
11
12
13
14
15
16
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer

17
18
19
20
21
22
api_meta_template = dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True),
    ]
)
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
    dict(
        type=HuggingFaceChatGLM3,
        abbr='chatglm3-6b-hf',
        path='THUDM/chatglm3-6b',
        tokenizer_path='THUDM/chatglm3-6b',
        model_kwargs=dict(
            device_map='auto',
            trust_remote_code=True,
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            trust_remote_code=True,
        ),
        generation_kwargs=dict(
            do_sample=True,
        ),
        meta_template=api_meta_template,
        max_out_len=2048,
        max_seq_len=4096,
47
        batch_size=8,
48
49
50
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]
51

52
datasets = [*subjective_datasets]
53

54
55
56
# -------------Evalation Stage ----------------------------------------

## ------------- JudgeLLM Configuration
57
judge_models = [dict(
58
    abbr='GPT4-Turbo',
bittersweet1999's avatar
bittersweet1999 committed
59
    type=OpenAI,
60
61
62
63
64
65
66
67
    path='gpt-4-1106-preview',
    key='xxxx',  # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
    meta_template=api_meta_template,
    query_per_second=16,
    max_out_len=2048,
    max_seq_len=2048,
    batch_size=8,
    temperature=0,
68
)]
69

70
## ------------- Evaluation Configuration
71
72
eval = dict(
    partitioner=dict(
73
        type=SubjectiveSizePartitioner, max_task_size=1000, mode='singlescore', models=models, judge_models=judge_models,
74
    ),
75
    runner=dict(type=LocalRunner, max_num_workers=2, task=dict(type=SubjectiveEvalTask)),
76
77
)

78
summarizer = dict(type=AlignmentBenchSummarizer, judge_type='general')
79
80

work_dir = 'outputs/alignment_bench/'