eval_subjective_alignbench.py 2.85 KB
Newer Older
1
from mmengine.config import read_base
2

3
with read_base():
4
    from .datasets.subjective.alignbench.alignbench_judgeby_critiquellm import subjective_datasets
5

6
7
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.models.openai_api import OpenAIAllesAPIN
8
from opencompass.partitioners import NaivePartitioner, SizePartitioner
9
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
10
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
11
12
13
14
15
16
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import AlignmentBenchSummarizer

17
18
19
20
21
22
api_meta_template = dict(
    round=[
        dict(role='HUMAN', api_role='HUMAN'),
        dict(role='BOT', api_role='BOT', generate=True),
    ]
)
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
    dict(
        type=HuggingFaceChatGLM3,
        abbr='chatglm3-6b-hf',
        path='THUDM/chatglm3-6b',
        tokenizer_path='THUDM/chatglm3-6b',
        model_kwargs=dict(
            device_map='auto',
            trust_remote_code=True,
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            trust_remote_code=True,
        ),
        generation_kwargs=dict(
            do_sample=True,
        ),
        meta_template=api_meta_template,
        max_out_len=2048,
        max_seq_len=4096,
        batch_size=1,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]
51

52
datasets = [*subjective_datasets]
53
54
55
56
57
58
59
60

infer = dict(
    partitioner=dict(type=NaivePartitioner),
    runner=dict(
        type=SlurmSequentialRunner,
        partition='llmeval',
        quotatype='auto',
        max_num_workers=256,
61
62
        task=dict(type=OpenICLInferTask),
    ),
63
64
)

65
66
67
# -------------Evalation Stage ----------------------------------------

## ------------- JudgeLLM Configuration
68
judge_model = dict(
69
70
71
72
73
74
75
76
77
78
79
    abbr='GPT4-Turbo',
    type=OpenAIAllesAPIN,
    path='gpt-4-1106-preview',
    key='xxxx',  # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
    url='xxxx',
    meta_template=api_meta_template,
    query_per_second=16,
    max_out_len=2048,
    max_seq_len=2048,
    batch_size=8,
    temperature=0,
80
)
81

82
## ------------- Evaluation Configuration
83
84
eval = dict(
    partitioner=dict(
85
        type=SubjectiveNaivePartitioner, mode='singlescore', models=models
86
87
    ),
    runner=dict(
88
89
        type=LocalRunner,
        max_num_workers=2,
90
91
        task=dict(type=SubjectiveEvalTask, judge_cfg=judge_model),
    ),
92
93
)

94
summarizer = dict(type=AlignmentBenchSummarizer, judge_type='general')
95
96

work_dir = 'outputs/alignment_bench/'