- 23 Sep, 2025 1 commit
-
-
Michael Yang authored
-
- 18 Sep, 2025 1 commit
-
-
Michael Yang authored
with #12181, there's now support for embeddings in ollama engine. this is done by mutating the architecture and adding _embed when it detects an embedding model. however this introduced a bug where if an embedding model was run based on an existing ollama engine model without an embedding implementation, e.g. llama4, it will pass the initial arch support check but fail when actually loaded. there's currently two entrypoints to creating a model. previously this second entrypoint was necessary because calling model.New would also load the model. since #11818, this is no longer th case so merge them to reduce complexity
-
- 16 Sep, 2025 1 commit
-
-
Michael Yang authored
* cleanup * use pooling.TypeNone * pooling test
-
- 15 Sep, 2025 1 commit
-
-
Michael Yang authored
* fix truncate * s/SentencePieceModel/SentencePiece/ * bert * wordpiece * refactor pooling * more tokenizers * normalize embeddings
-
- 04 Sep, 2025 1 commit
-
-
Michael Yang authored
* ollama: add embeddings
-
- 02 Sep, 2025 1 commit
-
-
Michael Yang authored
-
- 29 Aug, 2025 1 commit
-
-
Daniel Hiltgen authored
* perf: build graph for next batch in parallel to keep GPU busy This refactors the main run loop of the ollama runner to perform the main GPU intensive tasks (Compute+Floats) in a go routine so we can prepare the next batch in parallel to reduce the amount of time the GPU stalls waiting for the next batch of work. * tests: tune integration tests for ollama engine This tunes the integration tests to focus more on models supported by the new engine.
-
- 14 Aug, 2025 1 commit
-
-
Michael Yang authored
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by:Gabe Goodhart <ghart@us.ibm.com> Co-authored-by:
Gabe Goodhart <ghart@us.ibm.com> Co-authored-by:
Daniel Hiltgen <daniel@ollama.com>
-
- 22 May, 2025 1 commit
-
-
Jesse Gross authored
FromFloatSlice and FromIntSlice return an error if the shape doesn't match the passed data or if memory can't be allocated. Since these are inputs, the memory being allocated is system memory rather than VRAM. In many cases, the caller can't really handle the error and panics. Empty and Zeros directly panic if they can't allocate memory. This makes things consistent by panicing for the first two cases, removing a fair amount of error handling code. This is also consistent with how Go typically handles these situations.
-
- 19 May, 2025 1 commit
-
-
Jesse Gross authored
Currently, when the backend is created, the tensors are loaded at the same time, which is a slow operation. This separates them to be two steps: - Create backend, including enumerating tensors and memory allocation - Loading tensor data This allows more flexibility in managing model loading.
-
- 15 May, 2025 1 commit
-
-
Jesse Gross authored
For some multimodal models (such as gemma3), we create a single graph that generates the image embedding and then use this in the text model. The embedding tensor is completely opaque to the runner. However, this doesn't work if we need to use the embedding in multiple batches. This can arise if the embedding is larger than the batch size. In these cases (as with llama4), we would like to create views that are more appropriately sized. However, if we do this then the original source tensor is used in multiple graphs, which isn't allowed. To avoid that problem, models with this pattern compute the embedding tensor on first use and recreate the individual views. There is no longer a single vision and text graph. This codifies the pattern of separating vision and text graphs. The logic of computing tensors on demand is moved to the runner, so models no longer have to worry about this. It also gives the runner visibility into the multimodal tensors, which is important for memory management.
-
- 12 May, 2025 1 commit
-
-
Michael Yang authored
reduce prompt log to trace level
-
- 08 Apr, 2025 1 commit
-
-
Jesse Gross authored
Currently, the KV cache and graph are lazily allocated as needed. The cache is fully allocated on first use of the corresponding layer whereas the graph grows with the size of the context. This can be an issue if another application allocates more VRAM after we do our calculations - Ollama will crash in the middle of inference. If we instead allocate the maximum needed memory at startup of the runner, we will either succeed or fail at that point rather than at some surprising time in the future. Currently, this only generates a worst case batch for text, which means that vision models may get a partial allocation and continue to lazily allocate the rest.
-
- 03 Apr, 2025 1 commit
-
-
Michael Yang authored
-
- 21 Mar, 2025 1 commit
-
-
Michael Yang authored
-
- 20 Mar, 2025 2 commits
-
-
Jesse Gross authored
Rather than directly giving the input data to models, we can pass a tensor instead. In the short term, this saves some duplicated code. Longer term, we will want to overlap setting up the next batch with processing of the current one. In this case, we will only have the shape of tensor but it will not be loaded with data at the time of graph generation. By passing only a tensor to models now, we set up this possibility and prevent them from relying on data that they won't have in the future. Although the same could be done for Positions and Outputs, in some cases we either need the raw input data or don't use them at all. Therefore, for now we leave them as they are and allow models to convert them to tensors as needed.
-
Jesse Gross authored
Options is no longer very descriptive of this struct.
-
- 14 Mar, 2025 1 commit
-
-
Jesse Gross authored
Currently there is a single context per sequence, shared all by all multimodal inputs. Since we build a vision encoder graph per image, with a large number of inputs we can eventually hit the maximum number of graph nodes per context. This changes to use a separate context for each image, ensuring that available resource limits are consistent.
-
- 13 Mar, 2025 2 commits
-
-
Michael Yang authored
Co-authored-by:Jeffrey Morgan <jmorganca@gmail.com>
-
Michael Yang authored
-
- 10 Mar, 2025 1 commit
-
-
Jesse Gross authored
The encoder cache needs to know the position of images in the input stream so that it knows when to delete them. Previously images didn't have a position, so we implied one by breaking batches before an image and then assuming the image was in the first position. However, multimodal objects are now given explicit positions in the input stream, so we can use that instead. Breaking batches was also a way to simulate a cross attention mask for mllama. However, given that it only supports a single sequence and a single image, this mask doesn't serve any real purpose. Removing the batch break does not appear to affect the quality of the output. Most of this is simply moving the input data structures to a new package to avoid import cycles.
-
- 07 Mar, 2025 1 commit
-
-
Jesse Gross authored
Various vision models have different requirements for how they receive their inputs. For example: - Mllama wants images together with text and the image embeddings don't themselves have positions or get stored in the main KV cache - Llava-style models feed in embeddings similar to tokens and images correspond to a varying number of tokens in the cache. In addition, the strategy for providing inputs must support batching and multiple sequences, which are managed by the runner. At the same time, we want to keep data handling fully in the model so that new architectures are not bottlenecked by runner code which does not understand their particular requirements. This provides a method for models to edit the input stream so that it meets their needs while still being in a format that the runner understands. This allows the runner to avoid special processing for different models. In addition, this fixes a regression where non-vision models may try to incorrectly interpret images.
-
- 04 Mar, 2025 1 commit
-
-
Daniel Hiltgen authored
* Include unified vision layers in memory prediction For newer vision models with a single gguf, include the projection estimates. * Adjust CLI to handle both styles of vision model metadata * Wire up new tokenizers for new engine If we're loading the new engine, utilize the new model text processor instead of calling into cgo wrappers for llama.cpp. This also cleans up some tech debt from the older tokenization flow for the C++ server which was no longer used. This also adjusts the grammar handling logic to pass through to the new engine instead of utilizing the cgo schema to grammar call. * Lay foundation for auto selection of new engine
-
- 27 Feb, 2025 1 commit
-
-
Michael Yang authored
update Context.Forward to accept multiple tensors to match Context.Compute signature update Context.Forward to return Context such that it can be chained with Context.Compute
-
- 20 Feb, 2025 1 commit
-
-
Jesse Gross authored
Currently the following parameters are in the runner but not used: - numGPULayers - mainGPU - threads - tensorSplit This passes them through to the backend, which is where they would actually get used. However, the GGML backend does not yet do anything with them.
-
- 15 Feb, 2025 1 commit
-
-
Bruce MacDonald authored
-
- 14 Feb, 2025 4 commits
-
-
Jesse Gross authored
This provides integration with the new Ollama engine (58245413 next ollama runner (#7913)) and the rest of the Ollama infrastructure such as the runner and Ollama server. In addition, it also builds out the KV cache infrastructure to support requirements of how Ollama runs models such as: - Parallel processing - Memory management for defragmentation and shifting - Multi-modal modals Both old and new engines continue to be supported. By default, only the old engine is used. To enable the new engine: Start the server with the OLLAMA_NEW_ENGINE environment variable set: OLLAMA_NEW_ENGINE=1 ./ollama serve Start a model that is supported by the Ollama engine. This one is Llama 3.1 8b Q4_K_M: ./ollama run jessegross/llama3.1
-
Jesse Gross authored
Currently, if a model uses an interface for its data structures (as mllama does) then the tensor data in the structs implementing that interface will not get loaded.
-
Jesse Gross authored
There are two cases where we may not have an output after computing: - Prompt processing where the length of the input exceeds the batch size - Internal memory management operations such as cache defrag and shift
-
Michael Yang authored
feat: add new Ollama engine using ggml through cgo This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this. - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go` - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go` - `ml.Tensor` defines the interface for a tensor and tensor operations This is the first implementation of the new engine. Follow up PRs will implement more features: - non-greedy sampling (#8410) - integration with Ollama and KV caching (#8301) - more model support (#9080) with more coming soon Co-authored-by:Bruce MacDonald <brucewmacdonald@gmail.com>
-