runner.go 22.9 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package llamarunner
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
20
	"unicode/utf8"
21

22
23
	"golang.org/x/sync/semaphore"

24
	"github.com/ollama/ollama/api"
25
	"github.com/ollama/ollama/envconfig"
26
	"github.com/ollama/ollama/llama"
27
	"github.com/ollama/ollama/llm"
28
	"github.com/ollama/ollama/logutil"
Jesse Gross's avatar
Jesse Gross committed
29
	"github.com/ollama/ollama/runner/common"
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
)

// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
	token int

	// embed is an image embedding
	embed []float32
}

type Sequence struct {
	// batch index
	iBatch int

	// number of tokens predicted so far
	numPredicted int

	// prompt inputs left to evaluate
	inputs []input

51
52
53
	// inputs that have been added to a batch but not yet submitted to Decode
	pendingInputs []input

54
55
56
57
58
59
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

60
61
62
63
	// does this sequence require cross-attention layers to be processed? - if we have seen
	// an image for certain multi-modal models
	crossAttention bool

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

	samplingCtx *llama.SamplingContext

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
	numKeep int

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

87
	doneReason llm.DoneReason
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
	numDecoded          int
	numPromptInputs     int
}

type NewSequenceParams struct {
	numPredict     int
	stop           []string
	numKeep        int
	samplingParams *llama.SamplingParams
	embedding      bool
}

104
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
	s.ready.Wait()

	startTime := time.Now()

	inputs, err := s.inputs(prompt, images)
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
		params.numKeep = len(inputs)
	}

120
121
	if s.model.AddBOSToken() {
		params.numKeep += 1
122
123
	}

124
125
126
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

127
	if len(inputs) > s.cache.numCtx {
128
		discard := len(inputs) - s.cache.numCtx
129
		newInputs := inputs[:params.numKeep]
130
131
132
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
133
		inputs = newInputs
134
135
136
137
	}

	var sc *llama.SamplingContext
	if params.samplingParams != nil {
Jesse Gross's avatar
Jesse Gross committed
138
139
140
141
		sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
		if err != nil {
			return nil, err
		}
142
143
		for _, input := range inputs {
			if input.embed == nil {
144
				sc.Accept(input.token, false)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
			}
		}
	}

	return &Sequence{
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
		samplingCtx:         sc,
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
168
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input, error) {
169
	var inputs []input
170
171
172
173
174
175
176
177
178
179
	var parts []string
	var matches [][]string

	if s.image != nil {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}
180
181
182

	for i, part := range parts {
		// text - tokenize
183
184
185
186
		tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
		if err != nil {
			return nil, err
		}
187

188
189
		for _, t := range tokens {
			inputs = append(inputs, input{token: t})
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
		}

		// image - generate image embedding
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

Jesse Gross's avatar
Jesse Gross committed
208
209
210
211
212
			embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
			if err != nil {
				return nil, err
			}

213
214
215
216
217
218
219
220
221
222
			for _, e := range embed {
				inputs = append(inputs, input{embed: e})
			}
		}
	}

	return inputs, nil
}

type Server struct {
223
224
225
226
227
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
228
229
	model *llama.Model

230
	// image model context for multi-modal models
231
	image *ImageContext
232

233
	// status for external health reporting - loading, ready to serve, etc.
234
	status llm.ServerStatus
235
236
237
238
239
240
241
242

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
243
	// TODO (jmorganca): make this n_batch
244
245
	batchSize int

246
247
248
249
250
251
252
253
254
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// decoding state
	lc *llama.Context
255

256
	// the list of simultaneous sequences being evaluated
257
258
	seqs []*Sequence

259
260
261
262
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
	// KV cache
	cache *InputCache

	// next sequence for prompt processing to avoid starvation
	nextSeq int
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
280
281
282
283
284
285
286
287
288
289
290
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
291
292
	}

293
294
295
296
297
298
299
300
301
302
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
303
304
}

305
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
306
307
308
309
310
311
312
313
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
314
	s.seqsSem.Release(1)
315
316
317
318
319
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

320
	// Logically these batches are used only within the context of processBatch
321
	// but it is better for performance to allocate them once here
Jesse Gross's avatar
Jesse Gross committed
322
323
324
325
	tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
	if err != nil {
		panic(err)
	}
326
327
	defer tokenBatch.Free()

328
329
330
	var embedBatch *llama.Batch
	embedBatchSize := s.image.BatchSize(s.batchSize)
	if embedBatchSize != 0 {
Jesse Gross's avatar
Jesse Gross committed
331
332
333
334
		embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
		if err != nil {
			panic(err)
		}
335
336
337
338
		defer embedBatch.Free()
	} else {
		embedBatch = &llama.Batch{}
	}
339
340
341
342
343
344

	for {
		select {
		case <-ctx.Done():
			return
		default:
345
346
347
348
349
			err := s.processBatch(tokenBatch, embedBatch)
			if err != nil {
				panic(err)
			}

350
351
352
353
354
355
356
357
358
359
360
361
362
			tokenBatch.Clear()
			embedBatch.Clear()
		}
	}
}

// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
363
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) error {
364
365
366
367
368
369
370
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

	var batch *llama.Batch
371
	crossAttention := false
372
373
374
375
376
377
378
379
380
381
382

	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

		if seq == nil {
			continue
		}

		// if past the num predict limit
383
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
384
			s.removeSequence(seqIdx, llm.DoneReasonLength)
385
386
387
388
			continue
		}

		for i, input := range seq.inputs {
389
390
391
392
			if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
				if len(seq.pendingInputs) == 0 {
					err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
					if err != nil {
393
394
395
396
397
398
399
400
401
						var reprocess *ErrReprocessInputs
						if errors.As(err, &reprocess) {
							// Prepend these inputs to the sequence's inputs queue for reprocessing
							seq.inputs = append(reprocess.Inputs, seq.inputs...)
							// Continue processing as normal
							continue
						} else {
							return err
						}
402
					}
403
404
405
406
407
				} else {
					break
				}
			}

408
409
410
411
412
413
414
415
416
417
418
			embedding := input.embed != nil

			// If we don't currently have a batch, use one of the correct type and
			// fill it up as much as possible across all sequences. If we encounter an
			// input of the opppsite type, stop for that sequence but then pick up from
			// there for the next batch, ensuring that we alternate types
			if batch == nil {
				if !embedding {
					batch = tokenBatch
				} else {
					batch = embedBatch
419
					seq.crossAttention = s.image.NeedCrossAttention(input)
420
				}
421
			} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
422
423
424
425
				s.nextSeq = seqIdx
				break
			}

426
			if i >= batch.Size() {
427
428
429
				break
			}

430
			crossAttention = seq.crossAttention
431
432
			batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
			seq.pendingInputs = append(seq.pendingInputs, input)
433
434
			seq.iBatch = batch.NumTokens() - 1
		}
435
436

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
437
438
439
	}

	if batch == nil || batch.NumTokens() == 0 {
440
		return nil
441
442
	}

443
444
	s.lc.SetCrossAttention(crossAttention)

445
446
	err := s.lc.Decode(batch)
	if err != nil {
447
		return fmt.Errorf("failed to decode batch: %w", err)
448
449
	}

450
451
452
453
454
455
456
	if crossAttention {
		// synchronize state to ensure the cross attention batch is complete.
		// needed specifically for multi-GPU systems otherwise an inflight
		// task may be incorrectly invalidated causing a crash
		s.lc.Synchronize()
	}

457
458
459
460
461
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

462
463
464
465
466
467
		// After calling Decode, pending inputs are now in the cache
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
			seq.pendingInputs = []input{}
		}

468
469
470
471
472
473
474
475
476
477
478
479
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
			continue
		}

		seq.numDecoded += 1
		if seq.numDecoded == 1 {
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
480
			embed := s.lc.GetEmbeddingsSeq(seq.cache.Id)
481
482
483
484
485
			if embed == nil {
				embed = s.lc.GetEmbeddingsIth(seq.iBatch)
			}

			seq.embedding <- embed
486
			s.removeSequence(i, llm.DoneReasonStop)
487
488
489
490
			continue
		}

		// sample a token
491
492
		token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
		seq.samplingCtx.Accept(token, true)
493
494
495
496
497
498
499
500
501
502
		piece := s.model.TokenToPiece(token)

		seq.numPredicted++

		// if it's an end of sequence token, break
		if s.model.TokenIsEog(token) {
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

503
			s.removeSequence(i, llm.DoneReasonStop)
504
505
506
507
508
509
510
511
			continue
		}

		seq.inputs = []input{{token: token}}

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
512
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
513
514
515
516
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
517
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
533

534
			s.removeSequence(i, llm.DoneReasonStop)
535
536
537
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
538
		if common.ContainsStopSuffix(sequence, seq.stop) {
539
540
541
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
542
		if common.IncompleteUnicode(sequence) {
543
544
545
546
			continue
		}

		if !flushPending(seq) {
547
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
548
549
		}
	}
550
551

	return nil
552
553
554
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
555
	var req llm.CompletionRequest
556
557
558
559
560
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

561
562
563
564
565
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

566
567
568
569
570
571
572
573
574
575
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

576
577
578
579
580
581
582
583
584
585
586
587
588
589
	// Extract options from the CompletionRequest
	samplingParams := llama.SamplingParams{
		TopK:           req.Options.TopK,
		TopP:           req.Options.TopP,
		MinP:           req.Options.MinP,
		TypicalP:       req.Options.TypicalP,
		Temp:           req.Options.Temperature,
		RepeatLastN:    req.Options.RepeatLastN,
		PenaltyRepeat:  req.Options.RepeatPenalty,
		PenaltyFreq:    req.Options.FrequencyPenalty,
		PenaltyPresent: req.Options.PresencePenalty,
		Seed:           uint32(req.Options.Seed),
		Grammar:        req.Grammar,
	}
590
591

	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
592
593
594
		numPredict:     req.Options.NumPredict,
		stop:           req.Options.Stop,
		numKeep:        req.Options.NumKeep,
595
596
597
598
599
600
601
602
		samplingParams: &samplingParams,
		embedding:      false,
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

603
	// Ensure there is a place to put the sequence, released when removed from s.seqs
604
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
605
606
607
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
608
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
609
		}
610
611
612
		return
	}

613
	s.mu.Lock()
614
	found := false
615
616
	for i, sq := range s.seqs {
		if sq == nil {
617
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
618
619
			if err != nil {
				s.mu.Unlock()
620
				s.seqsSem.Release(1)
621
622
623
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
624

625
626
			seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)

627
628
			s.seqs[i] = seq
			s.cond.Signal()
629
			found = true
630
631
632
633
634
			break
		}
	}
	s.mu.Unlock()

635
	if !found {
636
		s.seqsSem.Release(1)
637
638
639
640
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

641
642
643
644
645
646
647
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
648
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
649
650
651
652
653
654
655
656
657
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
658
659
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
660
					DoneReason:         seq.doneReason,
661
662
663
664
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numDecoded,
					EvalDuration:       time.Since(seq.startGenerationTime),
665
666
667
668
669
670
671
672
673
674
675
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
676
	var req llm.EmbeddingRequest
677
678
679
680
681
682
683
684
685
686
687
688
689
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")

	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

690
	// Ensure there is a place to put the sequence, released when removed from s.seqs
691
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
692
693
694
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embeddings request due to client closing the connection")
		} else {
695
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
696
		}
697
698
699
		return
	}

700
	s.mu.Lock()
701
	found := false
702
703
	for i, sq := range s.seqs {
		if sq == nil {
704
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
705
706
			if err != nil {
				s.mu.Unlock()
707
				s.seqsSem.Release(1)
708
709
710
711
712
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
713
			found = true
714
715
716
717
718
			break
		}
	}
	s.mu.Unlock()

719
	if !found {
720
		s.seqsSem.Release(1)
721
722
723
724
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

725
726
	embedding := <-seq.embedding

727
	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
728
729
730
731
732
733
734
735
		Embedding: embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
736
737
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
738
739
740
741
742
743
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

744
745
746
747
748
749
750
751
752
753
754
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

755
756
757
func (s *Server) loadModel(
	params llama.ModelParams,
	mpath string,
758
	lpath multiLPath,
759
760
	ppath string,
	kvSize int,
761
	kvCacheType string,
762
763
764
765
	flashAttention bool,
	threads int,
	multiUserCache bool,
) {
766
767
768
769
770
	var err error
	s.model, err = llama.LoadModelFromFile(mpath, params)
	if err != nil {
		panic(err)
	}
771

772
	ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention, kvCacheType)
773
774
775
776
	s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
	if err != nil {
		panic(err)
	}
777

778
779
780
781
782
783
	if lpath.String() != "" {
		for _, path := range lpath {
			err := s.model.ApplyLoraFromFile(s.lc, path, 1.0, threads)
			if err != nil {
				panic(err)
			}
784
785
786
787
		}
	}

	if ppath != "" {
788
		var err error
789
		s.image, err = NewImageContext(s.lc, ppath)
790
791
792
		if err != nil {
			panic(err)
		}
793
794
	}

795
796
797
798
	s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
	if err != nil {
		panic(err)
	}
799

800
	s.status = llm.ServerStatusReady
801
802
803
	s.ready.Done()
}

804
805
806
807
808
809
810
811
812
813
814
815
816
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	ppath := fs.String("mmproj", "", "Path to projector binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
	nGpuLayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGpu := fs.Int("main-gpu", 0, "Main GPU")
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
817
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
818
819
820
	noMmap := fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
821

822
	var lpaths multiLPath
823
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
824

825
826
827
828
829
830
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
831
	}
832
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
833
	slog.Info("starting go runner")
834
835

	llama.BackendInit()
836
837
838
839
840

	server := &Server{
		batchSize: *batchSize,
		parallel:  *parallel,
		seqs:      make([]*Sequence, *parallel),
841
		seqsSem:   semaphore.NewWeighted(int64(*parallel)),
842
		status:    llm.ServerStatusLoadingModel,
843
844
845
846
	}

	var tensorSplitFloats []float32
	if *tensorSplit != "" {
847
848
849
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
850
			f, _ := strconv.ParseFloat(s, 32)
851
			tensorSplitFloats[i] = float32(f)
852
853
854
855
856
857
		}
	}

	params := llama.ModelParams{
		NumGpuLayers: *nGpuLayers,
		MainGpu:      *mainGpu,
858
		UseMmap:      !*noMmap && lpaths.String() == "",
859
860
861
862
863
864
865
		TensorSplit:  tensorSplitFloats,
		Progress: func(progress float32) {
			server.progress = progress
		},
	}

	server.ready.Add(1)
866
	go server.loadModel(params, *mpath, lpaths, *ppath, *kvSize, *kvCacheType, *flashAttention, *threads, *multiUserCache)
867
868
869
870

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
871
872
	defer cancel()

873
874
875
876
877
878
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
879
		return err
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
	}
	defer listener.Close()

	mux := http.NewServeMux()
	mux.HandleFunc("/embedding", server.embeddings)
	mux.HandleFunc("/completion", server.completion)
	mux.HandleFunc("/health", server.health)

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
895
		return err
896
897
	}

898
	return nil
899
}