runner.go 25.4 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package llamarunner
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"path/filepath"
	"regexp"
	"runtime"
	"strconv"
	"strings"
	"sync"
	"time"
21
	"unicode/utf8"
22

23
24
	"golang.org/x/sync/semaphore"

25
26
	"github.com/ollama/ollama/api"
	"github.com/ollama/ollama/llama"
Jesse Gross's avatar
Jesse Gross committed
27
	"github.com/ollama/ollama/runner/common"
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
)

// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
	token int

	// embed is an image embedding
	embed []float32
}

type Sequence struct {
	// batch index
	iBatch int

	// number of tokens predicted so far
	numPredicted int

	// prompt inputs left to evaluate
	inputs []input

49
50
51
	// inputs that have been added to a batch but not yet submitted to Decode
	pendingInputs []input

52
53
54
55
56
57
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

58
59
60
61
	// does this sequence require cross-attention layers to be processed? - if we have seen
	// an image for certain multi-modal models
	crossAttention bool

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

	samplingCtx *llama.SamplingContext

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
	numKeep int

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

	doneReason string

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
	numDecoded          int
	numPromptInputs     int
}

type NewSequenceParams struct {
	numPredict     int
	stop           []string
	numKeep        int
	samplingParams *llama.SamplingParams
	embedding      bool
}

func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) {
	s.ready.Wait()

	startTime := time.Now()

	inputs, err := s.inputs(prompt, images)
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
		params.numKeep = len(inputs)
	}

118
119
	if s.model.AddBOSToken() {
		params.numKeep += 1
120
121
	}

122
123
124
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

125
	if len(inputs) > s.cache.numCtx {
126
		discard := len(inputs) - s.cache.numCtx
127
		newInputs := inputs[:params.numKeep]
128
129
130
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
131
		inputs = newInputs
132
133
134
135
	}

	var sc *llama.SamplingContext
	if params.samplingParams != nil {
Jesse Gross's avatar
Jesse Gross committed
136
137
138
139
		sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
		if err != nil {
			return nil, err
		}
140
141
		for _, input := range inputs {
			if input.embed == nil {
142
				sc.Accept(input.token, false)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
			}
		}
	}

	return &Sequence{
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
		samplingCtx:         sc,
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) {
	var inputs []input
168
169
170
171
172
173
174
175
176
177
	var parts []string
	var matches [][]string

	if s.image != nil {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}
178
179
180

	for i, part := range parts {
		// text - tokenize
181
182
183
184
		tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
		if err != nil {
			return nil, err
		}
185

186
187
		for _, t := range tokens {
			inputs = append(inputs, input{token: t})
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
		}

		// image - generate image embedding
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

Jesse Gross's avatar
Jesse Gross committed
206
207
208
209
210
			embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID)
			if err != nil {
				return nil, err
			}

211
212
213
214
215
216
217
218
219
220
			for _, e := range embed {
				inputs = append(inputs, input{embed: e})
			}
		}
	}

	return inputs, nil
}

type Server struct {
221
222
223
224
225
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
226
227
	model *llama.Model

228
	// image model context for multi-modal models
229
	image *ImageContext
230

231
232
233
234
235
236
237
238
239
240
	// status for external health reporting - loading, ready to serve, etc.
	status ServerStatus

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
241
	// TODO (jmorganca): make this n_batch
242
243
	batchSize int

244
245
246
247
248
249
250
251
252
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// decoding state
	lc *llama.Context
253

254
	// the list of simultaneous sequences being evaluated
255
256
	seqs []*Sequence

257
258
259
260
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
	// KV cache
	cache *InputCache

	// next sequence for prompt processing to avoid starvation
	nextSeq int
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
278
279
280
281
282
283
284
285
286
287
288
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
289
290
	}

291
292
293
294
295
296
297
298
299
300
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
301
302
303
304
305
306
307
308
309
310
311
}

func (s *Server) removeSequence(seqIndex int, reason string) {
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
312
	s.seqsSem.Release(1)
313
314
315
316
317
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

318
	// Logically these batches are used only within the context of processBatch
319
	// but it is better for performance to allocate them once here
Jesse Gross's avatar
Jesse Gross committed
320
321
322
323
	tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
	if err != nil {
		panic(err)
	}
324
325
	defer tokenBatch.Free()

326
327
328
	var embedBatch *llama.Batch
	embedBatchSize := s.image.BatchSize(s.batchSize)
	if embedBatchSize != 0 {
Jesse Gross's avatar
Jesse Gross committed
329
330
331
332
		embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
		if err != nil {
			panic(err)
		}
333
334
335
336
		defer embedBatch.Free()
	} else {
		embedBatch = &llama.Batch{}
	}
337
338
339
340
341
342

	for {
		select {
		case <-ctx.Done():
			return
		default:
343
344
345
346
347
			err := s.processBatch(tokenBatch, embedBatch)
			if err != nil {
				panic(err)
			}

348
349
350
351
352
353
354
355
356
357
358
359
360
			tokenBatch.Clear()
			embedBatch.Clear()
		}
	}
}

// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
361
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) error {
362
363
364
365
366
367
368
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

	var batch *llama.Batch
369
	crossAttention := false
370
371
372
373
374
375
376
377
378
379
380

	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

		if seq == nil {
			continue
		}

		// if past the num predict limit
381
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
382
383
384
385
386
			s.removeSequence(seqIdx, "limit")
			continue
		}

		for i, input := range seq.inputs {
387
388
389
390
391
392
			if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
				if len(seq.pendingInputs) == 0 {
					err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
					if err != nil {
						return err
					}
393
394
395
396
397
				} else {
					break
				}
			}

398
399
400
401
402
403
404
405
406
407
408
			embedding := input.embed != nil

			// If we don't currently have a batch, use one of the correct type and
			// fill it up as much as possible across all sequences. If we encounter an
			// input of the opppsite type, stop for that sequence but then pick up from
			// there for the next batch, ensuring that we alternate types
			if batch == nil {
				if !embedding {
					batch = tokenBatch
				} else {
					batch = embedBatch
409
					seq.crossAttention = s.image.NeedCrossAttention(input)
410
				}
411
			} else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention {
412
413
414
415
				s.nextSeq = seqIdx
				break
			}

416
			if i >= batch.Size() {
417
418
419
				break
			}

420
			crossAttention = seq.crossAttention
421
422
			batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
			seq.pendingInputs = append(seq.pendingInputs, input)
423
424
			seq.iBatch = batch.NumTokens() - 1
		}
425
426

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
427
428
429
	}

	if batch == nil || batch.NumTokens() == 0 {
430
		return nil
431
432
	}

433
434
	s.lc.SetCrossAttention(crossAttention)

435
436
	err := s.lc.Decode(batch)
	if err != nil {
437
		return fmt.Errorf("failed to decode batch: %w", err)
438
439
	}

440
441
442
443
444
445
446
	if crossAttention {
		// synchronize state to ensure the cross attention batch is complete.
		// needed specifically for multi-GPU systems otherwise an inflight
		// task may be incorrectly invalidated causing a crash
		s.lc.Synchronize()
	}

447
448
449
450
451
	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

452
453
454
455
456
457
		// After calling Decode, pending inputs are now in the cache
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
			seq.pendingInputs = []input{}
		}

458
459
460
461
462
463
464
465
466
467
468
469
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
			continue
		}

		seq.numDecoded += 1
		if seq.numDecoded == 1 {
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
470
			embed := s.lc.GetEmbeddingsSeq(seq.cache.Id)
471
472
473
474
475
476
477
478
479
480
			if embed == nil {
				embed = s.lc.GetEmbeddingsIth(seq.iBatch)
			}

			seq.embedding <- embed
			s.removeSequence(i, "")
			continue
		}

		// sample a token
481
482
		token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
		seq.samplingCtx.Accept(token, true)
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
		piece := s.model.TokenToPiece(token)

		seq.numPredicted++

		// if it's an end of sequence token, break
		if s.model.TokenIsEog(token) {
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

			s.removeSequence(i, "stop")
			continue
		}

		seq.inputs = []input{{token: token}}

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
502
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
503
504
505
506
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
507
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
523
524
525
526
527

			s.removeSequence(i, "stop")
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
528
		if common.ContainsStopSuffix(sequence, seq.stop) {
529
530
531
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
532
		if common.IncompleteUnicode(sequence) {
533
534
535
536
537
538
539
			continue
		}

		if !flushPending(seq) {
			s.removeSequence(i, "connection")
		}
	}
540
541

	return nil
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
}

// TODO (jmorganca): use structs from the api package to avoid duplication
// this way the api acts as a proxy instead of using a different api for the
// runner
type Options struct {
	api.Runner

	NumKeep          int      `json:"n_keep"`
	Seed             int      `json:"seed"`
	NumPredict       int      `json:"n_predict"`
	TopK             int      `json:"top_k"`
	TopP             float32  `json:"top_p"`
	MinP             float32  `json:"min_p"`
	TypicalP         float32  `json:"typical_p"`
	RepeatLastN      int      `json:"repeat_last_n"`
	Temperature      float32  `json:"temperature"`
	RepeatPenalty    float32  `json:"repeat_penalty"`
	PresencePenalty  float32  `json:"presence_penalty"`
	FrequencyPenalty float32  `json:"frequency_penalty"`
	Mirostat         int      `json:"mirostat"`
	MirostatTau      float32  `json:"mirostat_tau"`
	MirostatEta      float32  `json:"mirostat_eta"`
	Stop             []string `json:"stop"`
}

type ImageData struct {
569
570
571
	Data          []byte `json:"data"`
	ID            int    `json:"id"`
	AspectRatioID int    `json:"aspect_ratio_id"`
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
}

type CompletionRequest struct {
	Prompt      string      `json:"prompt"`
	Images      []ImageData `json:"image_data"`
	Grammar     string      `json:"grammar"`
	CachePrompt bool        `json:"cache_prompt"`

	Options
}

type Timings struct {
	PredictedN  int     `json:"predicted_n"`
	PredictedMS float64 `json:"predicted_ms"`
	PromptN     int     `json:"prompt_n"`
	PromptMS    float64 `json:"prompt_ms"`
}

type CompletionResponse struct {
	Content string `json:"content"`
	Stop    bool   `json:"stop"`

	Model        string  `json:"model,omitempty"`
	Prompt       string  `json:"prompt,omitempty"`
	StoppedLimit bool    `json:"stopped_limit,omitempty"`
	PredictedN   int     `json:"predicted_n,omitempty"`
	PredictedMS  float64 `json:"predicted_ms,omitempty"`
	PromptN      int     `json:"prompt_n,omitempty"`
	PromptMS     float64 `json:"prompt_ms,omitempty"`

	Timings Timings `json:"timings"`
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
	var req CompletionRequest
	req.Options = Options(api.DefaultOptions())
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

	var samplingParams llama.SamplingParams
	samplingParams.TopK = req.TopK
	samplingParams.TopP = req.TopP
	samplingParams.MinP = req.MinP
	samplingParams.TypicalP = req.TypicalP
	samplingParams.Temp = req.Temperature
	samplingParams.RepeatLastN = req.RepeatLastN
	samplingParams.PenaltyRepeat = req.RepeatPenalty
	samplingParams.PenaltyFreq = req.FrequencyPenalty
	samplingParams.PenaltyPresent = req.PresencePenalty
	samplingParams.Mirostat = req.Mirostat
	samplingParams.MirostatTau = req.MirostatTau
	samplingParams.MirostatEta = req.MirostatEta
	samplingParams.Seed = uint32(req.Seed)
	samplingParams.Grammar = req.Grammar

	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
		numPredict:     req.NumPredict,
		stop:           req.Stop,
		numKeep:        req.NumKeep,
		samplingParams: &samplingParams,
		embedding:      false,
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

651
	// Ensure there is a place to put the sequence, released when removed from s.seqs
652
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
653
654
655
656
657
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
658
659
660
		return
	}

661
	s.mu.Lock()
662
	found := false
663
664
	for i, sq := range s.seqs {
		if sq == nil {
665
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
666
667
668
669
670
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
671

672
673
			seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...)

674
675
			s.seqs[i] = seq
			s.cond.Signal()
676
			found = true
677
678
679
680
681
			break
		}
	}
	s.mu.Unlock()

682
683
684
685
686
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
				// Send the final response
				if err := json.NewEncoder(w).Encode(&CompletionResponse{
					Stop:         true,
					StoppedLimit: seq.doneReason == "limit",
					Timings: Timings{
						PromptN:     seq.numPromptInputs,
						PromptMS:    float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()),
						PredictedN:  seq.numDecoded,
						PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()),
					},
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

type EmbeddingRequest struct {
	Content     string `json:"content"`
	CachePrompt bool   `json:"cache_prompt"`
}

type EmbeddingResponse struct {
	Embedding []float32 `json:"embedding"`
}

func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	var req EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")

	slog.Debug("embedding request", "content", req.Content)

	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

750
	// Ensure there is a place to put the sequence, released when removed from s.seqs
751
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
752
753
754
755
756
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embeddings request due to client closing the connection")
		} else {
			slog.Error("Failed to acquire semaphore", "error", err)
		}
757
758
759
		return
	}

760
	s.mu.Lock()
761
	found := false
762
763
	for i, sq := range s.seqs {
		if sq == nil {
764
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt)
765
766
767
768
769
770
771
			if err != nil {
				s.mu.Unlock()
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
772
			found = true
773
774
775
776
777
			break
		}
	}
	s.mu.Unlock()

778
779
780
781
782
	if !found {
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
	embedding := <-seq.embedding

	if err := json.NewEncoder(w).Encode(&EmbeddingResponse{
		Embedding: embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

type HealthResponse struct {
	Status   string  `json:"status"`
	Progress float32 `json:"progress"`
}

type ServerStatus int

const (
	ServerStatusReady ServerStatus = iota
	ServerStatusLoadingModel
	ServerStatusError
)

func (s ServerStatus) ToString() string {
	switch s {
	case ServerStatusReady:
		return "ok"
	case ServerStatusLoadingModel:
		return "loading model"
	default:
		return "server error"
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
	if err := json.NewEncoder(w).Encode(&HealthResponse{
		Status:   s.status.ToString(),
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

826
827
828
829
830
831
832
833
834
835
836
type multiLPath []string

func (m *multiLPath) Set(value string) error {
	*m = append(*m, value)
	return nil
}

func (m *multiLPath) String() string {
	return strings.Join(*m, ", ")
}

837
838
839
func (s *Server) loadModel(
	params llama.ModelParams,
	mpath string,
840
	lpath multiLPath,
841
842
	ppath string,
	kvSize int,
843
	kvCacheType string,
844
845
846
847
	flashAttention bool,
	threads int,
	multiUserCache bool,
) {
848
849
850
851
852
	var err error
	s.model, err = llama.LoadModelFromFile(mpath, params)
	if err != nil {
		panic(err)
	}
853

854
	ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention, kvCacheType)
855
856
857
858
	s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
	if err != nil {
		panic(err)
	}
859

860
861
862
863
864
865
	if lpath.String() != "" {
		for _, path := range lpath {
			err := s.model.ApplyLoraFromFile(s.lc, path, 1.0, threads)
			if err != nil {
				panic(err)
			}
866
867
868
869
		}
	}

	if ppath != "" {
870
		var err error
871
		s.image, err = NewImageContext(s.lc, ppath)
872
873
874
		if err != nil {
			panic(err)
		}
875
876
	}

877
878
879
880
	s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
	if err != nil {
		panic(err)
	}
881
882
883
884
885

	s.status = ServerStatusReady
	s.ready.Done()
}

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	ppath := fs.String("mmproj", "", "Path to projector binary file")
	parallel := fs.Int("parallel", 1, "Number of sequences to handle simultaneously")
	batchSize := fs.Int("batch-size", 512, "Batch size")
	nGpuLayers := fs.Int("n-gpu-layers", 0, "Number of layers to offload to GPU")
	mainGpu := fs.Int("main-gpu", 0, "Main GPU")
	flashAttention := fs.Bool("flash-attn", false, "Enable flash attention")
	kvSize := fs.Int("ctx-size", 2048, "Context (or KV cache) size")
	kvCacheType := fs.String("kv-cache-type", "", "quantization type for KV cache (default: f16)")
	port := fs.Int("port", 8080, "Port to expose the server on")
	threads := fs.Int("threads", runtime.NumCPU(), "Number of threads to use during generation")
	verbose := fs.Bool("verbose", false, "verbose output (default: disabled)")
	noMmap := fs.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)")
	mlock := fs.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing")
	tensorSplit := fs.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions")
	multiUserCache := fs.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users")
904

905
	var lpaths multiLPath
906
	fs.Var(&lpaths, "lora", "Path to lora layer file (can be specified multiple times)")
907

908
909
910
911
912
913
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
	}
	level := slog.LevelInfo
	if *verbose {
		level = slog.LevelDebug
	}
	handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{
		Level:     level,
		AddSource: true,
		ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr {
			if attr.Key == slog.SourceKey {
				source := attr.Value.Any().(*slog.Source)
				source.File = filepath.Base(source.File)
			}
			return attr
		},
	})
	slog.SetDefault(slog.New(handler))
	slog.Info("starting go runner")
932
933

	llama.BackendInit()
934
935
936
937
938

	server := &Server{
		batchSize: *batchSize,
		parallel:  *parallel,
		seqs:      make([]*Sequence, *parallel),
939
		seqsSem:   semaphore.NewWeighted(int64(*parallel)),
940
941
942
943
944
		status:    ServerStatusLoadingModel,
	}

	var tensorSplitFloats []float32
	if *tensorSplit != "" {
945
946
947
		splits := strings.Split(*tensorSplit, ",")
		tensorSplitFloats = make([]float32, len(splits))
		for i, s := range splits {
948
			f, _ := strconv.ParseFloat(s, 32)
949
			tensorSplitFloats[i] = float32(f)
950
951
952
953
954
955
		}
	}

	params := llama.ModelParams{
		NumGpuLayers: *nGpuLayers,
		MainGpu:      *mainGpu,
956
		UseMmap:      !*noMmap && lpaths.String() == "",
957
958
959
960
961
962
963
964
		UseMlock:     *mlock,
		TensorSplit:  tensorSplitFloats,
		Progress: func(progress float32) {
			server.progress = progress
		},
	}

	server.ready.Add(1)
965
	go server.loadModel(params, *mpath, lpaths, *ppath, *kvSize, *kvCacheType, *flashAttention, *threads, *multiUserCache)
966
967
968
969

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
970
971
	defer cancel()

972
973
974
975
976
977
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
978
		return err
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
	}
	defer listener.Close()

	mux := http.NewServeMux()
	mux.HandleFunc("/embedding", server.embeddings)
	mux.HandleFunc("/completion", server.completion)
	mux.HandleFunc("/health", server.health)

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
994
		return err
995
996
	}

997
	return nil
998
}