llava.cpp 25.3 KB
Newer Older
1
2
3
#include "clip.h"
#include "llava.h"

4
5
6
7
#include "llama.h"

#include <algorithm>
#include <cerrno>
8
9
#include <cstdio>
#include <cstdlib>
10
11
#include <cstring>
#include <limits>
12
#include <vector>
13
#include <memory>
14

15
16
17
18
19
20
21
22
23
24
25
#if defined(LLAVA_LOG_OFF)
#   define LOG_INF(...)
#   define LOG_WRN(...)
#   define LOG_ERR(...)
#   define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
#   define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#   define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// RGB uint8 image
struct clip_image_u8 {
    int nx;
    int ny;

    std::vector<uint8_t> buf;
};

// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
    int nx;
    int ny;

    std::vector<float> buf;
};

struct clip_image_grid_shape {
    int first;
    int second;
};

49
50
51
52
53
54
55
56
57
58
59
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
    void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;

struct clip_image_size_deleter {
    void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/**
 * Selects the best resolution from a list of possible resolutions based on the original size.
 *
 * @param original_size The original size of the image in the format (width, height).
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 * @return The best fit resolution in the format (width, height).
 */
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
    int original_width  = original_size.first;
    int original_height = original_size.second;

    std::pair<int, int> best_fit;
    int max_effective_resolution = 0;
    int min_wasted_resolution = std::numeric_limits<int>::max();

    for (const auto& resolution : possible_resolutions) {
        int width = resolution.first;
        int height = resolution.second;
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
        int downscaled_width  = static_cast<int>(original_width * scale);
        int downscaled_height = static_cast<int>(original_height * scale);
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
        int wasted_resolution = (width * height) - effective_resolution;
83
        // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
            best_fit = resolution;
        }
    }

    return best_fit;
}

/**
 * @brief Get the anyres image grid shape object
 *
 * @param image_size
 * @param grid_pinpoints
 * @param image_patch_size
 * @return <int, int>
 */
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
    /**
        Conversion from gguf flat array to vector:
        std::vector<std::pair<int, int>> possible_resolutions;
        for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
            possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
        }
     */
    auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
    return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
}

// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
    struct {
        struct ggml_context * ctx;
    } model;

120
121
    const int32_t image_size = clip_get_image_size(ctx_clip);
    const int32_t patch_size = clip_get_patch_size(ctx_clip);
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)

    int num_patches_width  = grid_shape.first;  // grid 1-4
    int num_patches_height = grid_shape.second; // grid 1-4

    const size_t num_images = num_patches_width * num_patches_height + 1;

    // TODO: size calculation is not calculated - it's only tens of MB
    size_t ctx_size = 0;

    {
        ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
        ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
    }

    struct ggml_init_params params {
        /*.mem_size   =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ false, // NOTE: this should be false when using the legacy API
    };

    // Python reference code for full unpad:
    /*
        base_image_feature = image_feature[0]
        image_feature = image_feature[1:]
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_sizes[image_idx])
        image_feature = torch.cat((
            image_feature,
            self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
        ), dim=-1)
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
    */
    // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
    // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
    // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
    // Once all images are processed to prepended the base_image_features without any changes.

    // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
    /*
        image_feature = image_feature.view(2, 2, 24, 24, 4096)
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.view(2, 24, 2, 24, 4096)
        image_feature = image_feature.flatten(0, 3)

        // Reshape to 4D tensor by merging the last two dimensions
        image_feature = image_feature.view(2, 2, 24, 24*4096)
        image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
        image_feature = image_feature.view(-1, 4096)
    */

    model.ctx = ggml_init(params);

    struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
    // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
    // fill it with the image embeddings, ignoring the base
    for (size_t i = 1; i < num_images; i++) {
        size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
        memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
    }

    struct ggml_cgraph  * gf = ggml_new_graph(model.ctx);
    size_t size_ele = ggml_type_size(GGML_TYPE_F32);

    struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
                                                                num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                num_patches_per_side,
                                                                num_patches_width,
                                                                num_patches_height,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
    // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
    struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
    /**
     At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
         image_feature = torch.cat((
        image_feature,
        self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
    ), dim=-1)
     *
     */

    // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
    struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side,  size_ele * clip_n_mmproj_embd(ctx_clip), 0);
    // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
    ggml_build_forward_expand(gf, flatten);
    ggml_graph_compute_with_ctx(model.ctx, gf, 1);
213
    struct ggml_tensor* result = ggml_graph_node(gf, -1);
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
    // append without newline tokens (default behavior in llava_arch when not using unpad ):
    memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
    *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));

    // Debug: Test single segments
    // Current findings: sending base image, sending a segment embedding all works similar to python
    // However, permuted embeddings do not work yet (stride issue?)
    // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
    // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
    // *n_img_pos_out=576;

    ggml_free(model.ctx);
    return true;
}

231
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    int width = image->nx;
    int height = image->ny;
    int num_patches = (height / patch_size) * (width / patch_size);
    clip_image_f32 * patch = clip_image_f32_init();
    patch->nx = patch_size * num_patches;
    patch->ny = patch_size;
    patch->buf.resize(3 * patch->nx * patch->ny);

    int patch_index = 0;

    for (int i = 0; i < height; i += patch_size) {
        for (int j = 0; j < width; j += patch_size) {
            for (int pi = 0; pi < patch_size; ++pi) {
                for (int pj = 0; pj < patch_size; ++pj) {
                    int input_index = ((i + pi) * width + (j + pj)) * 3;
                    int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
                    patch->buf[output_index] = image->buf[input_index];
                    patch->buf[output_index+1] = image->buf[input_index+1];
                    patch->buf[output_index+2] = image->buf[input_index+2];
                }
            }
            patch_index++;
        }
    }
    return patch;
}

static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
    // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
261
262
    clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
    if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
263
        LOG_ERR("%s: unable to preprocess image\n", __func__);
264
265
266
267
268
269
270
        return false;
    }

    const int64_t t_img_enc_start_us = ggml_time_us();

    const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);

271
272
    const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());

273
    if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
274
        std::vector<float *> image_embd_v;
275
276
        image_embd_v.resize(n_imgs);
        clip_image_size load_image_size;
277

278
        for (size_t i = 0; i < n_imgs; i++) {
279
            const int64_t t_img_enc_step_start_us = ggml_time_us();
280
281
282
283
284
285
286
            int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
            int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
            int patch_size = 14;
            load_image_size.width = nx;
            load_image_size.height = ny;
            clip_add_load_image_size(ctx_clip, &load_image_size);
287

288
            bool encoded = false;
289
            clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
290
            if (clip_is_qwen2vl(ctx_clip)) {
291
                encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
292
            }
293
            else {
294
                encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
295
296
            }

297
            if (!encoded) {
298
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
299
300
301
                return false;
            }
            const int64_t t_img_enc_steop_batch_us = ggml_time_us();
302
            LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
303
304
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
305
        LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
306
307
308

        int n_img_pos_out = 0;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
309
310
311
            int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
            int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
            clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
312
313
314
            std::memcpy(
                image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
                image_embd_v[i],
315
316
                clip_embd_nbytes_by_img(ctx_clip, nx, ny));
            n_img_pos_out += clip_n_patches_by_img(ctx_clip, img_res);
317
318
319
320
321
322
        }
        *n_img_pos = n_img_pos_out;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();
323
324
325
326
        load_image_size.width = img->nx;
        load_image_size.height = img->ny;
        clip_add_load_image_size(ctx_clip, &load_image_size);
        LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
327
328
329
    }
    else if (clip_is_glm(ctx_clip)){
        struct clip_image_size * load_image_size = clip_image_size_init();
330
331
        load_image_size->width  = clip_image_f32_batch_nx(img_res_v.get(), 0);
        load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
332
333
        clip_add_load_image_size(ctx_clip, load_image_size);

334
335
336
        clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
        bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
        int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
337
338
339
340
341
        *n_img_pos = (pos * pos + 2);
        if (!encoded){
            LOG_ERR("Unable to encode image \n");
            return false;
        }
342
343
344
345
    }
    else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
        // flat / default llava-1.5 type embedding
        *n_img_pos = clip_n_patches(ctx_clip);
346
347
        clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
        bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
348
        if (!encoded) {
349
            LOG_ERR("Unable to encode image\n");
350
351
352
353
354
355
356
357

            return false;
        }
    }
    else {
        // spatial_unpad llava-1.6 type embedding
        // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
        std::vector<float *> image_embd_v;
358
359
360
        image_embd_v.resize(n_imgs);
        for (size_t i = 0; i < n_imgs; i++) {
            clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
361
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
362
            const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
363
            if (!encoded) {
364
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
365
366
367
368
                return false;
            }
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
369
        LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
370
371

        const int32_t * image_grid = clip_image_grid(ctx_clip);
372
        const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
373
374

        std::vector<std::pair<int, int>> grid_pinpoints;
375
        for (size_t i = 0; i < num_gridpoints; i += 2) {
376
377
378
            grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
        }

379
        const int32_t image_size = clip_get_image_size(ctx_clip);
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

        struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

        int n_img_pos_out;
        clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
        *n_img_pos = n_img_pos_out;

        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();

        // debug image/segment/normalization content:
        // clip_image_u8 * tmp = clip_image_u8_init();
        // clip_image_convert_f32_to_u8(*image_feature, *tmp);
        // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
    }

398
    LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
399
400
401
402

    const int64_t t_img_enc_end_us = ggml_time_us();
    float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;

403
    LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
404
405
406
407
408
409

    return true;
}

bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
        // make sure that the correct mmproj was used, i.e., compare apples to apples
410
    int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
411
412
    auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
    if (n_image_embd != n_llama_embd) {
413
        LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
414
415
416
417
418
419
        return false;
    }
    return true;
}

bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
420
421
    // Granite vision uses up to 10 patches + base patch
    int num_max_patches = 11;
422
423
424
    if (clip_is_minicpmv(ctx_clip)) {
        num_max_patches = 10;
    }
425
426
427
    if (clip_is_glm(ctx_clip)) {
        num_max_patches = 1;
    }
428
429
430
431
432
433
434
    float * image_embd;
    if (clip_is_qwen2vl(ctx_clip)) {
        // qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
        image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
    } else {
        image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
    }
435
    if (!image_embd) {
436
        LOG_ERR("Unable to allocate memory for image embeddings\n");
437
438
439
440
441
        return false;
    }

    int n_img_pos;
    if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
442
        LOG_ERR("%s: cannot encode image, aborting\n", __func__);
443
444
445
446
447
448
449
450
451
        free(image_embd);
        return false;
    }
    *image_embd_out = image_embd;
    *n_img_pos_out = n_img_pos;

    return true;
}

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
struct llava_embd_batch {
    std::vector<llama_pos>      pos;
    std::vector<int32_t>        n_seq_id;
    std::vector<llama_seq_id>   seq_id_0;
    std::vector<llama_seq_id *> seq_ids;
    std::vector<int8_t>         logits;
    llama_batch batch;
    llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
        pos     .resize(n_tokens);
        n_seq_id.resize(n_tokens);
        seq_ids .resize(n_tokens + 1);
        logits  .resize(n_tokens);
        seq_id_0.resize(1);
        seq_id_0[0] = seq_id;
        seq_ids [n_tokens] = nullptr;
        batch = {
            /*n_tokens       =*/ n_tokens,
            /*tokens         =*/ nullptr,
            /*embd           =*/ embd,
            /*n_embd         =*/ n_embd,
            /*pos            =*/ pos.data(),
            /*n_seq_id       =*/ n_seq_id.data(),
            /*seq_id         =*/ seq_ids.data(),
            /*logits         =*/ logits.data(),
        };
        for (int i = 0; i < n_tokens; i++) {
            batch.pos     [i] = pos_0 + i;
            batch.n_seq_id[i] = 1;
            batch.seq_id  [i] = seq_id_0.data();
            batch.logits  [i] = false;
        }
    }
};

486
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
487
    int n_embd  = llama_model_n_embd(llama_get_model(ctx_llama));
488
489
490
491
492
493

    for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
        int n_eval = image_embed->n_image_pos - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
494
495
496
        float * embd = image_embed->embed+i*n_embd;
        llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
        if (llama_decode(ctx_llama, llava_batch.batch)) {
497
            LOG_ERR("%s : failed to eval\n", __func__);
498
499
500
501
502
503
504
505
506
507
508
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
    clip_image_u8 * img = clip_image_u8_init();
    if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
        clip_image_u8_free(img);
509
        LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
510
511
512
513
514
515
516
517
        return NULL;
    }

    float* image_embed = NULL;
    int n_image_pos = 0;
    bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
    if (!image_embed_result) {
        clip_image_u8_free(img);
518
        LOG_ERR("%s: couldn't embed the image\n", __func__);
519
520
521
522
523
524
525
526
527
528
529
530
531
        return NULL;
    }

    clip_image_u8_free(img);
    auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
    result->embed = image_embed;
    result->n_image_pos = n_image_pos;
    return result;
}

static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
    auto file = fopen(path, "rb");
    if (file == NULL) {
532
        LOG_ERR("%s: can't read file %s\n", __func__, path);
533
534
535
536
537
538
539
540
541
        return false;
    }

    fseek(file, 0, SEEK_END);
    auto fileSize = ftell(file);
    fseek(file, 0, SEEK_SET);

    auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
    if (buffer == NULL) {
542
        LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
543
544
545
546
547
548
549
        perror("Memory allocation error");
        fclose(file);
        return false;
    }
    errno = 0;
    size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
    if (ferror(file)) {
550
551
552
553
        LOG_ERR("read error: %s", strerror(errno));
        free(buffer);
        fclose(file);
        return false;
554
555
    }
    if (ret != (size_t) fileSize) {
556
557
558
559
        LOG_ERR("unexpectedly reached end of file");
        free(buffer);
        fclose(file);
        return false;
560
561
562
563
564
565
566
567
568
569
570
571
572
    }
    fclose(file); // Close the file

    *bytesOut = buffer;
    *sizeOut = fileSize;
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
    unsigned char* image_bytes;
    long image_bytes_length;
    auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
    if (!loaded) {
573
        LOG_ERR("%s: failed to load %s\n", __func__, image_path);
574
575
576
577
578
579
580
581
582
583
584
585
586
        return NULL;
    }

    llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
    free(image_bytes);

    return embed;
}

void llava_image_embed_free(struct llava_image_embed * embed) {
    free(embed->embed);
    free(embed);
}