llava.cpp 24.6 KB
Newer Older
1
2
3
#include "clip.h"
#include "llava.h"

4
5
6
7
#include "llama.h"

#include <algorithm>
#include <cerrno>
8
9
#include <cstdio>
#include <cstdlib>
10
11
#include <cstring>
#include <limits>
12
#include <vector>
13

14
15
16
17
18
19
20
21
22
23
24
#if defined(LLAVA_LOG_OFF)
#   define LOG_INF(...)
#   define LOG_WRN(...)
#   define LOG_ERR(...)
#   define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
#   define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#   define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

// RGB uint8 image
struct clip_image_u8 {
    int nx;
    int ny;

    std::vector<uint8_t> buf;
};

// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
    int nx;
    int ny;

    std::vector<float> buf;
};

struct clip_image_grid_shape {
    int first;
    int second;
};

/**
 * Selects the best resolution from a list of possible resolutions based on the original size.
 *
 * @param original_size The original size of the image in the format (width, height).
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 * @return The best fit resolution in the format (width, height).
 */
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
    int original_width  = original_size.first;
    int original_height = original_size.second;

    std::pair<int, int> best_fit;
    int max_effective_resolution = 0;
    int min_wasted_resolution = std::numeric_limits<int>::max();

    for (const auto& resolution : possible_resolutions) {
        int width = resolution.first;
        int height = resolution.second;
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
        int downscaled_width  = static_cast<int>(original_width * scale);
        int downscaled_height = static_cast<int>(original_height * scale);
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
        int wasted_resolution = (width * height) - effective_resolution;
71
        // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
            best_fit = resolution;
        }
    }

    return best_fit;
}

/**
 * @brief Get the anyres image grid shape object
 *
 * @param image_size
 * @param grid_pinpoints
 * @param image_patch_size
 * @return <int, int>
 */
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
    /**
        Conversion from gguf flat array to vector:
        std::vector<std::pair<int, int>> possible_resolutions;
        for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
            possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
        }
     */
    auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
    return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
}

// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
    struct {
        struct ggml_context * ctx;
    } model;

    const int32_t image_size = clip_image_size(ctx_clip);
    const int32_t patch_size = clip_patch_size(ctx_clip);

    int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)

    int num_patches_width  = grid_shape.first;  // grid 1-4
    int num_patches_height = grid_shape.second; // grid 1-4

    const size_t num_images = num_patches_width * num_patches_height + 1;

    // TODO: size calculation is not calculated - it's only tens of MB
    size_t ctx_size = 0;

    {
        ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
        ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
    }

    struct ggml_init_params params {
        /*.mem_size   =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ false, // NOTE: this should be false when using the legacy API
    };

    // Python reference code for full unpad:
    /*
        base_image_feature = image_feature[0]
        image_feature = image_feature[1:]
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_sizes[image_idx])
        image_feature = torch.cat((
            image_feature,
            self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
        ), dim=-1)
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
    */
    // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
    // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
    // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
    // Once all images are processed to prepended the base_image_features without any changes.

    // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
    /*
        image_feature = image_feature.view(2, 2, 24, 24, 4096)
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.view(2, 24, 2, 24, 4096)
        image_feature = image_feature.flatten(0, 3)

        // Reshape to 4D tensor by merging the last two dimensions
        image_feature = image_feature.view(2, 2, 24, 24*4096)
        image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
        image_feature = image_feature.view(-1, 4096)
    */

    model.ctx = ggml_init(params);

    struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
    // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
    // fill it with the image embeddings, ignoring the base
    for (size_t i = 1; i < num_images; i++) {
        size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
        memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
    }

    struct ggml_cgraph  * gf = ggml_new_graph(model.ctx);
    size_t size_ele = ggml_type_size(GGML_TYPE_F32);

    struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
                                                                num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                num_patches_per_side,
                                                                num_patches_width,
                                                                num_patches_height,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
    // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
    struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
    /**
     At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
         image_feature = torch.cat((
        image_feature,
        self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
    ), dim=-1)
     *
     */

    // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
    struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side,  size_ele * clip_n_mmproj_embd(ctx_clip), 0);
    // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
    ggml_build_forward_expand(gf, flatten);
    ggml_graph_compute_with_ctx(model.ctx, gf, 1);
201
    struct ggml_tensor* result = ggml_graph_node(gf, -1);
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
    // append without newline tokens (default behavior in llava_arch when not using unpad ):
    memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
    *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));

    // Debug: Test single segments
    // Current findings: sending base image, sending a segment embedding all works similar to python
    // However, permuted embeddings do not work yet (stride issue?)
    // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
    // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
    // *n_img_pos_out=576;

    ggml_free(model.ctx);
    return true;
}

219
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    int width = image->nx;
    int height = image->ny;
    int num_patches = (height / patch_size) * (width / patch_size);
    clip_image_f32 * patch = clip_image_f32_init();
    patch->nx = patch_size * num_patches;
    patch->ny = patch_size;
    patch->buf.resize(3 * patch->nx * patch->ny);

    int patch_index = 0;

    for (int i = 0; i < height; i += patch_size) {
        for (int j = 0; j < width; j += patch_size) {
            for (int pi = 0; pi < patch_size; ++pi) {
                for (int pj = 0; pj < patch_size; ++pj) {
                    int input_index = ((i + pi) * width + (j + pj)) * 3;
                    int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
                    patch->buf[output_index] = image->buf[input_index];
                    patch->buf[output_index+1] = image->buf[input_index+1];
                    patch->buf[output_index+2] = image->buf[input_index+2];
                }
            }
            patch_index++;
        }
    }
    return patch;
}

static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
    // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
    clip_image_f32_batch img_res_v;
    img_res_v.size = 0;
    img_res_v.data = nullptr;
    if (!clip_image_preprocess(ctx_clip, img, &img_res_v)) {
253
        LOG_ERR("%s: unable to preprocess image\n", __func__);
254
255
256
257
258
259
260
261
        delete[] img_res_v.data;
        return false;
    }

    const int64_t t_img_enc_start_us = ggml_time_us();

    const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);

262
    if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
263
264
265
        std::vector<float *> image_embd_v;
        image_embd_v.resize(img_res_v.size);
        struct clip_image_size * load_image_size = clip_image_size_init();
266

267
268
        for (size_t i = 0; i < img_res_v.size; i++) {
            const int64_t t_img_enc_step_start_us = ggml_time_us();
269
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
270
271
272
273
            int patch_size=14;
            load_image_size->width = img_res_v.data[i].nx;
            load_image_size->height = img_res_v.data[i].ny;
            clip_add_load_image_size(ctx_clip, load_image_size);
274

275
            bool encoded = false;
276
            if (clip_is_qwen2vl(ctx_clip)) {
277
278
                encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
            }
279
            else {
280
                encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
281
282
            }

283
            if (!encoded) {
284
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
285
286
287
                return false;
            }
            const int64_t t_img_enc_steop_batch_us = ggml_time_us();
288
            LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)img_res_v.size, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
289
290
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
291
        LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
292
293
294

        int n_img_pos_out = 0;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
295
296
297
298
299
            std::memcpy(
                image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
                image_embd_v[i],
                clip_embd_nbytes_by_img(ctx_clip, img_res_v.data[i].nx, img_res_v.data[i].ny));
            n_img_pos_out += clip_n_patches_by_img(ctx_clip, &img_res_v.data[i]);
300
301
302
303
304
305
306
307
308
        }
        *n_img_pos = n_img_pos_out;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();
        load_image_size->width = img->nx;
        load_image_size->height = img->ny;
        clip_add_load_image_size(ctx_clip, load_image_size);
309
        LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        delete[] img_res_v.data;
        img_res_v.size = 0;
        img_res_v.data = nullptr;
    }
    else if (clip_is_glm(ctx_clip)){
        struct clip_image_size * load_image_size = clip_image_size_init();
        load_image_size->width = img_res_v.data[0].nx;
        load_image_size->height = img_res_v.data[0].ny;
        clip_add_load_image_size(ctx_clip, load_image_size);

        bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd);
        int pos = int(load_image_size->width/clip_patch_size(ctx_clip)/2);
        *n_img_pos = (pos * pos + 2);
        if (!encoded){
            LOG_ERR("Unable to encode image \n");
            return false;
        }
327
328
329
330
331
332
333
    }
    else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
        // flat / default llava-1.5 type embedding
        *n_img_pos = clip_n_patches(ctx_clip);
        bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd); // image_embd shape is 576 x 4096
        delete[] img_res_v.data;
        if (!encoded) {
334
            LOG_ERR("Unable to encode image\n");
335
336
337
338
339
340
341
342
343
344
345
346
347

            return false;
        }
    }
    else {
        // spatial_unpad llava-1.6 type embedding
        // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
        std::vector<float *> image_embd_v;
        image_embd_v.resize(img_res_v.size);
        for (size_t i = 0; i < img_res_v.size; i++) {
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
            const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
            if (!encoded) {
348
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
349
350
351
352
                return false;
            }
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
353
        LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
354
355

        const int32_t * image_grid = clip_image_grid(ctx_clip);
356
        const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
357
358

        std::vector<std::pair<int, int>> grid_pinpoints;
359
        for (size_t i = 0; i < num_gridpoints; i += 2) {
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
            grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
        }

        // free all img_res_v - not needed anymore
        delete[] img_res_v.data;
        img_res_v.size = 0;
        img_res_v.data = nullptr;

        const int32_t image_size = clip_image_size(ctx_clip);

        struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

        int n_img_pos_out;
        clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
        *n_img_pos = n_img_pos_out;

        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();

        // debug image/segment/normalization content:
        // clip_image_u8 * tmp = clip_image_u8_init();
        // clip_image_convert_f32_to_u8(*image_feature, *tmp);
        // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
    }

387
    LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
388
389
390
391

    const int64_t t_img_enc_end_us = ggml_time_us();
    float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;

392
    LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
393
394
395
396
397
398

    return true;
}

bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
        // make sure that the correct mmproj was used, i.e., compare apples to apples
399
    int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
400
401
    auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
    if (n_image_embd != n_llama_embd) {
402
        LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
403
404
405
406
407
408
        return false;
    }
    return true;
}

bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
409
410
    // Granite vision uses up to 10 patches + base patch
    int num_max_patches = 11;
411
412
413
    if (clip_is_minicpmv(ctx_clip)) {
        num_max_patches = 10;
    }
414
415
416
    if (clip_is_glm(ctx_clip)) {
        num_max_patches = 1;
    }
417
418
419
420
421
422
423
    float * image_embd;
    if (clip_is_qwen2vl(ctx_clip)) {
        // qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
        image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
    } else {
        image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
    }
424
    if (!image_embd) {
425
        LOG_ERR("Unable to allocate memory for image embeddings\n");
426
427
428
429
430
        return false;
    }

    int n_img_pos;
    if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
431
        LOG_ERR("%s: cannot encode image, aborting\n", __func__);
432
433
434
435
436
437
438
439
440
        free(image_embd);
        return false;
    }
    *image_embd_out = image_embd;
    *n_img_pos_out = n_img_pos;

    return true;
}

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
struct llava_embd_batch {
    std::vector<llama_pos>      pos;
    std::vector<int32_t>        n_seq_id;
    std::vector<llama_seq_id>   seq_id_0;
    std::vector<llama_seq_id *> seq_ids;
    std::vector<int8_t>         logits;
    llama_batch batch;
    llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
        pos     .resize(n_tokens);
        n_seq_id.resize(n_tokens);
        seq_ids .resize(n_tokens + 1);
        logits  .resize(n_tokens);
        seq_id_0.resize(1);
        seq_id_0[0] = seq_id;
        seq_ids [n_tokens] = nullptr;
        batch = {
            /*n_tokens       =*/ n_tokens,
            /*tokens         =*/ nullptr,
            /*embd           =*/ embd,
            /*n_embd         =*/ n_embd,
            /*pos            =*/ pos.data(),
            /*n_seq_id       =*/ n_seq_id.data(),
            /*seq_id         =*/ seq_ids.data(),
            /*logits         =*/ logits.data(),
        };
        for (int i = 0; i < n_tokens; i++) {
            batch.pos     [i] = pos_0 + i;
            batch.n_seq_id[i] = 1;
            batch.seq_id  [i] = seq_id_0.data();
            batch.logits  [i] = false;
        }
    }
};

475
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
476
    int n_embd  = llama_model_n_embd(llama_get_model(ctx_llama));
477
478
479
480
481
482

    for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
        int n_eval = image_embed->n_image_pos - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
483
484
485
        float * embd = image_embed->embed+i*n_embd;
        llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
        if (llama_decode(ctx_llama, llava_batch.batch)) {
486
            LOG_ERR("%s : failed to eval\n", __func__);
487
488
489
490
491
492
493
494
495
496
497
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
    clip_image_u8 * img = clip_image_u8_init();
    if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
        clip_image_u8_free(img);
498
        LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
499
500
501
502
503
504
505
506
        return NULL;
    }

    float* image_embed = NULL;
    int n_image_pos = 0;
    bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
    if (!image_embed_result) {
        clip_image_u8_free(img);
507
        LOG_ERR("%s: couldn't embed the image\n", __func__);
508
509
510
511
512
513
514
515
516
517
518
519
520
        return NULL;
    }

    clip_image_u8_free(img);
    auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
    result->embed = image_embed;
    result->n_image_pos = n_image_pos;
    return result;
}

static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
    auto file = fopen(path, "rb");
    if (file == NULL) {
521
        LOG_ERR("%s: can't read file %s\n", __func__, path);
522
523
524
525
526
527
528
529
530
        return false;
    }

    fseek(file, 0, SEEK_END);
    auto fileSize = ftell(file);
    fseek(file, 0, SEEK_SET);

    auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
    if (buffer == NULL) {
531
        LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
532
533
534
535
536
537
538
        perror("Memory allocation error");
        fclose(file);
        return false;
    }
    errno = 0;
    size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
    if (ferror(file)) {
539
540
541
542
        LOG_ERR("read error: %s", strerror(errno));
        free(buffer);
        fclose(file);
        return false;
543
544
    }
    if (ret != (size_t) fileSize) {
545
546
547
548
        LOG_ERR("unexpectedly reached end of file");
        free(buffer);
        fclose(file);
        return false;
549
550
551
552
553
554
555
556
557
558
559
560
561
    }
    fclose(file); // Close the file

    *bytesOut = buffer;
    *sizeOut = fileSize;
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
    unsigned char* image_bytes;
    long image_bytes_length;
    auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
    if (!loaded) {
562
        LOG_ERR("%s: failed to load %s\n", __func__, image_path);
563
564
565
566
567
568
569
570
571
572
573
574
575
        return NULL;
    }

    llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
    free(image_bytes);

    return embed;
}

void llava_image_embed_free(struct llava_image_embed * embed) {
    free(embed->embed);
    free(embed);
}