model.go 6.94 KB
Newer Older
Patrick Devine's avatar
Patrick Devine committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
package gemma2

import (
	"math"

	"github.com/ollama/ollama/kvcache"
	"github.com/ollama/ollama/ml"
	"github.com/ollama/ollama/ml/nn"
	"github.com/ollama/ollama/model"
	"github.com/ollama/ollama/model/input"
)

type Options struct {
	hiddenSize, numHeads, numKVHeads int
	attnKeyLen, attnValLen           int
	eps, ropeBase, ropeScale         float32
	attnLogitSoftcap                 float32
	finalLogitSoftcap                float32
	largeModelScaling                bool
}

type Model struct {
	model.Base
	model.SentencePieceModel

	TokenEmbedding *nn.Embedding `gguf:"token_embd"`
	Layers         []Layer       `gguf:"blk"`
	OutputNorm     *nn.RMSNorm   `gguf:"output_norm"`
	Output         *nn.Linear    `gguf:"output,alt:token_embd"` // just set to token_embd?

	*Options
}

const (
	gemma27BLayerCount = 46
)

func New(c ml.Config) (model.Model, error) {
	m := Model{
		SentencePieceModel: model.NewSentencePieceModel(
			c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
			&model.Vocabulary{
				Values: c.Strings("tokenizer.ggml.tokens"),
				Scores: c.Floats("tokenizer.ggml.scores"),
				Types:  c.Uints("tokenizer.ggml.token_type"),
				BOS:    int32(c.Uint("tokenizer.ggml.bos_token_id")),
				EOS:    int32(c.Uint("tokenizer.ggml.eos_token_id")),
			},
		),
		Layers: make([]Layer, c.Uint("block_count")),
		Options: &Options{
			hiddenSize:        int(c.Uint("embedding_length")),
			numHeads:          int(c.Uint("attention.head_count")),
			numKVHeads:        int(c.Uint("attention.head_count_kv")),
			attnKeyLen:        int(c.Uint("attention.key_length")),
			attnValLen:        int(c.Uint("attention.value_length")),
			eps:               c.Float("attention.layer_norm_rms_epsilon"),
			ropeBase:          c.Float("rope.freq_base", 10000.0),
			ropeScale:         c.Float("rope.freq_scale", 1.0),
			attnLogitSoftcap:  c.Float("attn_logit_softcapping"),
			finalLogitSoftcap: c.Float("final_logit_softcapping"),
		},
	}

	slidingWindowLen := int32(c.Uint("attention.sliding_window"))
	m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift))
Jesse Gross's avatar
Jesse Gross committed
67
	m.Cache.SetConfig(ml.CacheConfig{})
Patrick Devine's avatar
Patrick Devine committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

	return &m, nil
}

type SelfAttention struct {
	Query  *nn.Linear `gguf:"attn_q"`
	Key    *nn.Linear `gguf:"attn_k"`
	Value  *nn.Linear `gguf:"attn_v"`
	Output *nn.Linear `gguf:"attn_output"`
}

func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
	batchSize := hiddenState.Dim(1)
	ropeType := uint32(2)

	q := sa.Query.Forward(ctx, hiddenState)
	q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
	q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	if opts.largeModelScaling {
Jesse Gross's avatar
Jesse Gross committed
88
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
Patrick Devine's avatar
Patrick Devine committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
	} else {
		q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen)))
	}

	k := sa.Key.Forward(ctx, hiddenState)
	k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
	k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale)

	v := sa.Value.Forward(ctx, hiddenState)
	v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)

	cache.Put(ctx, k, v)
	k, v, mask := cache.Get(ctx)

Jesse Gross's avatar
Jesse Gross committed
103
104
	q = q.Permute(ctx, 0, 2, 1, 3)
	k = k.Permute(ctx, 0, 2, 1, 3)
Patrick Devine's avatar
Patrick Devine committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
	v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)

	kq := k.Mulmat(ctx, q)

	// logit softcap
	kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap))
	kq = kq.Tanh(ctx)
	kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap))

	kq = kq.Add(ctx, mask)
	kq = kq.Softmax(ctx)

	kqv := v.Mulmat(ctx, kq)
	kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
	kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize)

	return sa.Output.Forward(ctx, kqv)
}

func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
	return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil
}

type MLP struct {
	Up   *nn.Linear `gguf:"ffn_up"`
	Down *nn.Linear `gguf:"ffn_down"`
	Gate *nn.Linear `gguf:"ffn_gate"`
}

func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
	hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
	return mlp.Down.Forward(ctx, hiddenState)
}

type Layer struct {
	AttentionNorm     *nn.RMSNorm `gguf:"attn_norm"`
	SelfAttention     *SelfAttention
	PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"`
	MLPNorm           *nn.RMSNorm `gguf:"ffn_norm"`
	MLP               *MLP
	PostMLPNorm       *nn.RMSNorm `gguf:"post_ffw_norm"`
}

Jesse Gross's avatar
Jesse Gross committed
148
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
Patrick Devine's avatar
Patrick Devine committed
149
150
151
152
153
	residual := hiddenState

	hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
	hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps)
Jesse Gross's avatar
Jesse Gross committed
154
155
156
157
158
159
160
161

	// In the final layer (outputs != nil), optimize by pruning to just the token positions
	// we need logits for.
	if outputs != nil {
		hiddenState = hiddenState.Rows(ctx, outputs)
		residual = residual.Rows(ctx, outputs)
	}

Patrick Devine's avatar
Patrick Devine committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
	hiddenState = hiddenState.Add(ctx, residual)
	residual = hiddenState

	hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
	hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
	hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps)
	return hiddenState.Add(ctx, residual)
}

func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
	inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
	if err != nil {
		return nil, err
	}

	positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
	if err != nil {
		return nil, err
	}

182
	outputs, err := ctx.Input().FromIntSlice(opts.Outputs, len(opts.Outputs))
Jesse Gross's avatar
Jesse Gross committed
183
184
185
186
	if err != nil {
		return nil, err
	}

Patrick Devine's avatar
Patrick Devine committed
187
188
189
190
191
192
193
194
195
196
197
198
	hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
	hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))

	if len(m.Layers) == gemma27BLayerCount {
		m.Options.largeModelScaling = true
	}

	for i, layer := range m.Layers {
		cacheType := i % 2
		m.Cache.SetLayer(i)
		wc := m.Cache.(*kvcache.WrapperCache)
		wc.SetLayerType(cacheType)
Jesse Gross's avatar
Jesse Gross committed
199
200
201
202
203
204
205

		var lastLayerOutputs ml.Tensor
		if i == len(m.Layers)-1 {
			lastLayerOutputs = outputs
		}

		hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
Patrick Devine's avatar
Patrick Devine committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
	}

	hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
	hiddenState = m.Output.Forward(ctx, hiddenState)

	// final logit softcap
	hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap))
	hiddenState = hiddenState.Tanh(ctx)
	hiddenState = hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap))
	return hiddenState.Rows(ctx, outputs), nil
}

func init() {
	model.Register("gemma2", New)
}