runner.go 23.1 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package llamarunner
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

import (
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
	"regexp"
	"strconv"
	"strings"
	"sync"
	"time"
19
	"unicode/utf8"
20

21
22
	"golang.org/x/sync/semaphore"

23
	"github.com/ollama/ollama/api"
24
	"github.com/ollama/ollama/envconfig"
25
	"github.com/ollama/ollama/llama"
26
	"github.com/ollama/ollama/llm"
27
	"github.com/ollama/ollama/logutil"
Jesse Gross's avatar
Jesse Gross committed
28
	"github.com/ollama/ollama/runner/common"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
)

// input is an element of the prompt to process, either
// a token or an image embedding (generated from a vision projector)
type input struct {
	token int

	// embed is an image embedding
	embed []float32
}

type Sequence struct {
	// batch index
	iBatch int

	// number of tokens predicted so far
	numPredicted int

	// prompt inputs left to evaluate
	inputs []input

50
51
52
	// inputs that have been added to a batch but not yet submitted to Decode
	pendingInputs []input

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

	samplingCtx *llama.SamplingContext

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
	numKeep int

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

82
83
84
	// shift if context window is exceeded
	shift bool

85
	doneReason llm.DoneReason
86
87

	// Metrics
Michael Yang's avatar
Michael Yang committed
88
89
90
91
	processingDuration time.Duration
	generationDuration time.Duration
	numDecoded         int
	numPromptInputs    int
92
93
94
95
96
97
98
99
}

type NewSequenceParams struct {
	numPredict     int
	stop           []string
	numKeep        int
	samplingParams *llama.SamplingParams
	embedding      bool
100
101
	shift          bool
	truncate       bool
102
103
}

104
105
var errorInputTooLong = errors.New("the input length exceeds the context length")

106
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
107
108
109
110
111
112
113
114
115
116
117
118
119
	s.ready.Wait()

	inputs, err := s.inputs(prompt, images)
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
		params.numKeep = len(inputs)
	}

120
121
	if s.model.AddBOSToken() {
		params.numKeep += 1
122
123
	}

124
125
126
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

127
	if len(inputs) > s.cache.numCtx {
128
		discard := len(inputs) - s.cache.numCtx
129
130
131
132
		if !params.truncate {
			return nil, errorInputTooLong
		}

133
		newInputs := inputs[:params.numKeep]
134
135
136
		newInputs = append(newInputs, inputs[params.numKeep+discard:]...)

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
137
		inputs = newInputs
138
139
140
141
	}

	var sc *llama.SamplingContext
	if params.samplingParams != nil {
Jesse Gross's avatar
Jesse Gross committed
142
143
144
145
		sc, err = llama.NewSamplingContext(s.model, *params.samplingParams)
		if err != nil {
			return nil, err
		}
146
147
		for _, input := range inputs {
			if input.embed == nil {
148
				sc.Accept(input.token, false)
149
150
151
152
153
			}
		}
	}

	return &Sequence{
Michael Yang's avatar
Michael Yang committed
154
155
156
157
158
159
160
161
162
163
164
		inputs:           inputs,
		numPromptInputs:  len(inputs),
		numPredict:       params.numPredict,
		pendingResponses: make([]string, 0),
		responses:        make(chan string, 100),
		quit:             make(chan bool, 1),
		embedding:        make(chan []float32, 1),
		samplingCtx:      sc,
		embeddingOnly:    params.embedding,
		stop:             params.stop,
		numKeep:          params.numKeep,
165
		shift:            params.shift,
166
167
168
169
170
171
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// generating image embeddings for each image
172
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input, error) {
173
	var inputs []input
174
175
176
177
178
179
180
181
182
183
	var parts []string
	var matches [][]string

	if s.image != nil {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
	} else {
		parts = []string{prompt}
	}
184
185
186

	for i, part := range parts {
		// text - tokenize
187
188
189
190
		tokens, err := s.lc.Model().Tokenize(part, i == 0, true)
		if err != nil {
			return nil, err
		}
191

192
193
		for _, t := range tokens {
			inputs = append(inputs, input{token: t})
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
		}

		// image - generate image embedding
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
				return nil, fmt.Errorf("invalid image index: %d", n)
			}

212
			chunks, err := s.image.MultimodalTokenize(s.lc, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
213
214
215
216
			if err != nil {
				return nil, err
			}

217
218
219
220
221
222
223
224
			for _, c := range chunks {
				if len(c.Embed) != 0 {
					inputs = append(inputs, input{embed: c.Embed})
				} else {
					for _, t := range c.Tokens {
						inputs = append(inputs, input{token: t})
					}
				}
225
226
227
228
229
230
231
232
			}
		}
	}

	return inputs, nil
}

type Server struct {
Jesse Gross's avatar
Jesse Gross committed
233
234
235
236
237
238
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

239
240
241
242
243
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
244
245
	model *llama.Model

246
	// image model context for multi-modal models
247
	image *ImageContext
248

249
	// status for external health reporting - loading, ready to serve, etc.
250
	status llm.ServerStatus
251
252
253
254
255
256
257
258

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
259
	// TODO (jmorganca): make this n_batch
260
261
	batchSize int

262
263
264
265
266
267
268
269
270
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// decoding state
	lc *llama.Context
271

272
	// the list of simultaneous sequences being evaluated
273
274
	seqs []*Sequence

275
276
277
278
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
	// KV cache
	cache *InputCache

	// next sequence for prompt processing to avoid starvation
	nextSeq int
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
296
297
298
299
300
301
302
303
304
305
306
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
307
308
	}

309
310
311
312
313
314
315
316
317
318
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
319
320
}

321
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
322
323
324
325
326
327
328
329
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
330
	s.seqsSem.Release(1)
331
332
333
334
335
}

func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

336
	// Logically these batches are used only within the context of processBatch
337
	// but it is better for performance to allocate them once here
Jesse Gross's avatar
Jesse Gross committed
338
339
340
341
	tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0)
	if err != nil {
		panic(err)
	}
342
343
	defer tokenBatch.Free()

344
345
346
	var embedBatch *llama.Batch
	embedBatchSize := s.image.BatchSize(s.batchSize)
	if embedBatchSize != 0 {
Jesse Gross's avatar
Jesse Gross committed
347
348
349
350
		embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc))
		if err != nil {
			panic(err)
		}
351
352
353
354
		defer embedBatch.Free()
	} else {
		embedBatch = &llama.Batch{}
	}
355
356
357
358
359
360

	for {
		select {
		case <-ctx.Done():
			return
		default:
361
362
363
364
365
			err := s.processBatch(tokenBatch, embedBatch)
			if err != nil {
				panic(err)
			}

366
367
368
369
370
371
372
373
374
375
376
377
378
			tokenBatch.Clear()
			embedBatch.Clear()
		}
	}
}

// TODO (jmorganca): processBatch should be simplified, removing:
// * sampling
// * stop token checking
// * metrics
// these should instead be handled by the handlers
// it should only be responsible for accepting tokens or embeddings and
// processing batches as fast as possible
379
func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) error {
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

	var batch *llama.Batch

	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]

		if seq == nil {
			continue
		}

		// if past the num predict limit
398
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
399
			s.removeSequence(seqIdx, llm.DoneReasonLength)
400
401
402
403
			continue
		}

		for i, input := range seq.inputs {
404
405
			if len(seq.cache.Inputs)+len(seq.pendingInputs)+1 > s.cache.numCtx {
				if len(seq.pendingInputs) == 0 {
406
407
408
409
410
					if !seq.shift {
						s.removeSequence(seqIdx, llm.DoneReasonLength)
						break
					}

411
412
					err := s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
					if err != nil {
413
414
415
416
417
418
419
420
421
						var reprocess *ErrReprocessInputs
						if errors.As(err, &reprocess) {
							// Prepend these inputs to the sequence's inputs queue for reprocessing
							seq.inputs = append(reprocess.Inputs, seq.inputs...)
							// Continue processing as normal
							continue
						} else {
							return err
						}
422
					}
423
424
425
426
427
				} else {
					break
				}
			}

428
429
430
431
432
433
434
435
436
437
438
439
			embedding := input.embed != nil

			// If we don't currently have a batch, use one of the correct type and
			// fill it up as much as possible across all sequences. If we encounter an
			// input of the opppsite type, stop for that sequence but then pick up from
			// there for the next batch, ensuring that we alternate types
			if batch == nil {
				if !embedding {
					batch = tokenBatch
				} else {
					batch = embedBatch
				}
440
			} else if embedding != batch.IsEmbedding() {
441
442
443
444
				s.nextSeq = seqIdx
				break
			}

445
			if i >= batch.Size() {
446
447
448
				break
			}

449
450
			batch.Add(input.token, input.embed, len(seq.cache.Inputs)+len(seq.pendingInputs), i+1 == len(seq.inputs), seq.cache.Id)
			seq.pendingInputs = append(seq.pendingInputs, input)
451
452
			seq.iBatch = batch.NumTokens() - 1
		}
453
454

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
455
456
457
	}

	if batch == nil || batch.NumTokens() == 0 {
458
		return nil
459
460
	}

Michael Yang's avatar
Michael Yang committed
461
462
	t := time.Now()
	if err := s.lc.Decode(batch); err != nil {
463
		return fmt.Errorf("failed to decode batch: %w", err)
464
465
466
467
468
469
470
	}

	for i, seq := range s.seqs {
		if seq == nil {
			continue
		}

471
472
473
474
475
476
		// After calling Decode, pending inputs are now in the cache
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
			seq.pendingInputs = []input{}
		}

477
478
479
480
481
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
			continue
		}

Michael Yang's avatar
Michael Yang committed
482
483
484
485
486
487
		s.lc.Synchronize()
		seq.numDecoded++
		if seq.numDecoded > 1 {
			seq.generationDuration += time.Since(t)
		} else {
			seq.processingDuration += time.Since(t)
488
489
490
491
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
492
			embed := s.lc.GetEmbeddingsSeq(seq.cache.Id)
493
494
495
496
497
			if embed == nil {
				embed = s.lc.GetEmbeddingsIth(seq.iBatch)
			}

			seq.embedding <- embed
498
			s.removeSequence(i, llm.DoneReasonStop)
499
500
501
502
			continue
		}

		// sample a token
503
504
		token := seq.samplingCtx.Sample(s.lc, seq.iBatch)
		seq.samplingCtx.Accept(token, true)
505
506
507
508
509
510
511
512
513
514
		piece := s.model.TokenToPiece(token)

		seq.numPredicted++

		// if it's an end of sequence token, break
		if s.model.TokenIsEog(token) {
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece

515
			s.removeSequence(i, llm.DoneReasonStop)
516
517
518
519
520
521
522
523
			continue
		}

		seq.inputs = []input{{token: token}}

		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
524
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
525
526
527
528
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
529
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
545

546
			s.removeSequence(i, llm.DoneReasonStop)
547
548
549
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
550
		if common.ContainsStopSuffix(sequence, seq.stop) {
551
552
553
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
554
		if common.IncompleteUnicode(sequence) {
555
556
557
558
			continue
		}

		if !flushPending(seq) {
559
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
560
561
		}
	}
562
563

	return nil
564
565
566
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
567
	var req llm.CompletionRequest
568
569
570
571
572
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

573
574
575
576
577
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

578
579
580
581
582
583
584
585
586
587
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

588
589
590
591
592
593
594
595
596
597
598
599
600
601
	// Extract options from the CompletionRequest
	samplingParams := llama.SamplingParams{
		TopK:           req.Options.TopK,
		TopP:           req.Options.TopP,
		MinP:           req.Options.MinP,
		TypicalP:       req.Options.TypicalP,
		Temp:           req.Options.Temperature,
		RepeatLastN:    req.Options.RepeatLastN,
		PenaltyRepeat:  req.Options.RepeatPenalty,
		PenaltyFreq:    req.Options.FrequencyPenalty,
		PenaltyPresent: req.Options.PresencePenalty,
		Seed:           uint32(req.Options.Seed),
		Grammar:        req.Grammar,
	}
602
603

	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
604
605
606
		numPredict:     req.Options.NumPredict,
		stop:           req.Options.Stop,
		numKeep:        req.Options.NumKeep,
607
608
		samplingParams: &samplingParams,
		embedding:      false,
609
610
		shift:          req.Shift,
		truncate:       req.Truncate,
611
612
	})
	if err != nil {
613
614
615
616
		if errors.Is(err, errorInputTooLong) {
			http.Error(w, err.Error(), http.StatusBadRequest)
			return
		}
617
618
619
620
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

621
	// Ensure there is a place to put the sequence, released when removed from s.seqs
622
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
623
624
625
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
626
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
627
		}
628
629
630
		return
	}

631
	s.mu.Lock()
632
	found := false
633
634
	for i, sq := range s.seqs {
		if sq == nil {
635
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
636
637
			if err != nil {
				s.mu.Unlock()
638
				s.seqsSem.Release(1)
639
640
641
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
642

643
644
			s.seqs[i] = seq
			s.cond.Signal()
645
			found = true
646
647
648
649
650
			break
		}
	}
	s.mu.Unlock()

651
	if !found {
652
		s.seqsSem.Release(1)
653
654
655
656
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

657
658
659
660
661
662
663
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
664
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
665
666
667
668
669
670
671
672
673
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
674
675
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
676
					DoneReason:         seq.doneReason,
677
					PromptEvalCount:    seq.numPromptInputs,
Michael Yang's avatar
Michael Yang committed
678
					PromptEvalDuration: seq.processingDuration,
679
					EvalCount:          seq.numDecoded,
Michael Yang's avatar
Michael Yang committed
680
					EvalDuration:       seq.generationDuration,
681
682
683
684
685
686
687
688
689
690
691
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
692
	var req llm.EmbeddingRequest
693
694
695
696
697
698
699
700
701
702
703
704
705
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")

	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

706
	// Ensure there is a place to put the sequence, released when removed from s.seqs
707
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
708
709
710
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embeddings request due to client closing the connection")
		} else {
711
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
712
		}
713
714
715
		return
	}

716
	s.mu.Lock()
717
	found := false
718
719
	for i, sq := range s.seqs {
		if sq == nil {
720
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
721
722
			if err != nil {
				s.mu.Unlock()
723
				s.seqsSem.Release(1)
724
725
726
727
728
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
			s.seqs[i] = seq
			s.cond.Signal()
729
			found = true
730
731
732
733
734
			break
		}
	}
	s.mu.Unlock()

735
	if !found {
736
		s.seqsSem.Release(1)
737
738
739
740
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

741
742
	embedding := <-seq.embedding

743
	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
744
745
746
747
748
749
750
751
		Embedding: embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
752
753
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
754
755
756
757
758
759
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

Jesse Gross's avatar
Jesse Gross committed
760
761
// loadModel allocates memory based on the given parameters and loads the weights. The
// memory allocated is worst case for text models but not for vision.
762
763
764
func (s *Server) loadModel(
	params llama.ModelParams,
	mpath string,
Jesse Gross's avatar
Jesse Gross committed
765
	lpath []string,
766
767
	ppath string,
	kvSize int,
768
	kvCacheType string,
769
770
771
772
	flashAttention bool,
	threads int,
	multiUserCache bool,
) {
773
774
775
776
777
	var err error
	s.model, err = llama.LoadModelFromFile(mpath, params)
	if err != nil {
		panic(err)
	}
778

779
	ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention, kvCacheType)
780
781
782
783
	s.lc, err = llama.NewContextWithModel(s.model, ctxParams)
	if err != nil {
		panic(err)
	}
784

Jesse Gross's avatar
Jesse Gross committed
785
786
787
788
	for _, path := range lpath {
		err := s.model.ApplyLoraFromFile(s.lc, path, 1.0, threads)
		if err != nil {
			panic(err)
789
790
791
792
		}
	}

	if ppath != "" {
793
		var err error
794
		s.image, err = NewImageContext(s.lc, ppath)
795
796
797
		if err != nil {
			panic(err)
		}
798
799
	}

800
801
802
803
	s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache)
	if err != nil {
		panic(err)
	}
804

805
	s.status = llm.ServerStatusReady
806
807
808
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	switch req.Operation {
	// LoadOperationFit and LoadOperationAlloc have no meaning here - just return a successful response

	case llm.LoadOperationCommit:
		s.batchSize = req.BatchSize
		s.parallel = req.Parallel
		s.seqs = make([]*Sequence, s.parallel)
		s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

		gpuIDs := llama.EnumerateGPUs()
		tensorSplit := make([]float32, len(gpuIDs))
		numGPU := 0
		for i := range gpuIDs {
			for _, layers := range req.GPULayers {
844
				if gpuIDs[i] == layers.DeviceID {
Jesse Gross's avatar
Jesse Gross committed
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
					tensorSplit[i] = float32(len(layers.Layers))
					numGPU += len(layers.Layers)
				}
			}
		}

		params := llama.ModelParams{
			NumGpuLayers: numGPU,
			MainGpu:      req.MainGPU,
			UseMmap:      req.UseMmap && len(req.LoraPath) == 0,
			TensorSplit:  tensorSplit,
			Progress: func(progress float32) {
				s.progress = progress
			},
		}

		s.status = llm.ServerStatusLoadingModel
		go s.loadModel(params, s.modelPath, req.LoraPath, req.ProjectorPath, req.KvSize, req.KvCacheType, req.FlashAttention, req.NumThreads, req.MultiUserCache)

	case llm.LoadOperationClose:
		// No-op for us
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	resp := llm.LoadResponse{Success: true}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

879
880
881
882
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
883
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
884

885
886
887
888
889
890
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
891
	}
892
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
893
	slog.Info("starting go runner")
894
895

	llama.BackendInit()
896
897

	server := &Server{
Jesse Gross's avatar
Jesse Gross committed
898
899
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
900
901
902
903
904
905
906
	}

	server.ready.Add(1)

	server.cond = sync.NewCond(&server.mu)

	ctx, cancel := context.WithCancel(context.Background())
Michael Yang's avatar
Michael Yang committed
907
908
	defer cancel()

909
910
911
912
913
914
	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
915
		return err
916
917
918
919
	}
	defer listener.Close()

	mux := http.NewServeMux()
Jesse Gross's avatar
Jesse Gross committed
920
	mux.HandleFunc("POST /load", server.load)
921
922
923
924
925
926
927
928
929
930
931
	mux.HandleFunc("/embedding", server.embeddings)
	mux.HandleFunc("/completion", server.completion)
	mux.HandleFunc("/health", server.health)

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
932
		return err
933
934
	}

935
	return nil
936
}