sampling.cpp 21.5 KB
Newer Older
1
2
#include "sampling.h"

3
#include "common.h"
4
#include "log.h"
5

6
7
#include <cmath>
#include <unordered_map>
8
#include <algorithm>
9

10
11
12
13
14
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
template<typename T>
struct ring_buffer {
    ring_buffer(size_t cap) : capacity(cap), data(cap) {}
15

16
17
18
    T & front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
19
        }
20
21
        return data[first];
    }
22

23
24
25
    const T & front() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
26
        }
27
28
        return data[first];
    }
29

30
31
32
    T & back() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
33
        }
34
        return data[pos];
35
36
    }

37
38
39
40
41
    const T & back() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
42
43
    }

44
45
46
47
48
49
50
51
52
    void push_back(const T & value) {
        if (sz == capacity) {
            // advance the start when buffer is full
            first = (first + 1) % capacity;
        } else {
            sz++;
        }
        data[pos] = value;
        pos = (pos + 1) % capacity;
53
54
    }

55
56
57
58
59
60
61
62
63
    T pop_front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        T value = data[first];
        first = (first + 1) % capacity;
        sz--;
        return value;
    }
64

65
66
67
    const T & rat(size_t i) const {
        if (i >= sz) {
            throw std::runtime_error("ring buffer: index out of bounds");
68
        }
69
        return data[(first + sz - i - 1) % capacity];
70
71
    }

72
73
74
75
76
77
78
79
    std::vector<T> to_vector() const {
        std::vector<T> result;
        result.reserve(sz);
        for (size_t i = 0; i < sz; i++) {
            result.push_back(data[(first + i) % capacity]);
        }
        return result;
    }
80

81
82
83
84
85
    void clear() {
        // here only reset the status of the buffer
        sz = 0;
        first = 0;
        pos = 0;
86
87
    }

88
89
    bool empty() const {
        return sz == 0;
90
91
    }

92
93
    size_t size() const {
        return sz;
94
95
    }

96
97
98
99
100
101
    size_t capacity = 0;
    size_t sz = 0;
    size_t first = 0;
    size_t pos = 0;
    std::vector<T> data;
};
102

103
104
struct common_sampler {
    common_params_sampling params;
105

106
107
    struct llama_sampler * grmr;
    struct llama_sampler * chain;
108

109
    ring_buffer<llama_token> prev;
110

111
    std::vector<llama_token_data> cur;
112

113
    llama_token_data_array cur_p;
114

115
116
    void set_logits(struct llama_context * ctx, int idx) {
        const auto * logits = llama_get_logits_ith(ctx, idx);
117

118
119
120
121
        const llama_model * model = llama_get_model(ctx);
        const llama_vocab * vocab = llama_model_get_vocab(model);

        const int n_vocab = llama_vocab_n_tokens(vocab);
122
123
124
125
126
127
128
129
130
131
132

        cur.resize(n_vocab);

        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
        }

        cur_p = { cur.data(), cur.size(), -1, false };
    }
};

133
std::string common_params_sampling::print() const {
134
135
136
137
    char result[1024];

    snprintf(result, sizeof(result),
            "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
138
            "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
139
            "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
140
            "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
141
            penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
142
            dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
143
            top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
144
            mirostat, mirostat_eta, mirostat_tau);
145
146
147
148

    return std::string(result);
}

149
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
150
151
    const llama_vocab * vocab = llama_model_get_vocab(model);

152
153
154
155
    llama_sampler_chain_params lparams = llama_sampler_chain_default_params();

    lparams.no_perf = params.no_perf;

156
157
158
159
160
161
162
163
    struct llama_sampler * grmr;
    if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
        grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
        GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
    } else {
164
        std::vector<std::string> trigger_patterns;
165
166
167
168
169
170
171
172
173
174
175
176
        std::vector<std::string> patterns_anywhere;
        std::vector<llama_token> trigger_tokens;
        for (const auto & trigger : params.grammar_triggers) {
            switch (trigger.type) {
                case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
                {
                    const auto & word = trigger.value;
                    patterns_anywhere.push_back(regex_escape(word));
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
                {
177
178
179
180
181
182
                    patterns_anywhere.push_back(trigger.value);
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
                {
                    trigger_patterns.push_back(trigger.value);
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
                {
                    const auto token = trigger.token;
                    trigger_tokens.push_back(token);
                    break;
                }
                default:
                    GGML_ASSERT(false && "unknown trigger type");
            }
        }

        if (!patterns_anywhere.empty()) {
            trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
        }

        std::vector<const char *> trigger_patterns_c;
        trigger_patterns_c.reserve(trigger_patterns.size());
        for (const auto & regex : trigger_patterns) {
            trigger_patterns_c.push_back(regex.c_str());
204
205
206
        }

        grmr = params.grammar_lazy
207
208
209
             ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
                                                        trigger_patterns_c.data(), trigger_patterns_c.size(),
                                                        trigger_tokens.data(), trigger_tokens.size())
210
             :      llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
211
212
213
        if (!grmr) {
            return nullptr;
        }
214
215
    }

216
    auto * result = new common_sampler {
217
        /* .params = */ params,
218
        /* .grmr   = */ grmr,
219
220
221
222
223
224
225
226
        /* .chain  = */ llama_sampler_chain_init(lparams),
        /* .prev   = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
        /* .cur    = */ {},
        /* .cur_p  = */ {},
    };

    llama_sampler_chain_add(result->chain,
            llama_sampler_init_logit_bias(
227
                llama_vocab_n_tokens(vocab),
228
229
230
                params.logit_bias.size(),
                params.logit_bias.data()));

231
    if (params.mirostat == 0) {
232
233
234
235
236
237
238
239
        for (const auto & cnstr : params.samplers) {
            switch (cnstr) {
                case COMMON_SAMPLER_TYPE_DRY:
                    {
                        std::vector<const char *> c_breakers;
                        c_breakers.reserve(params.dry_sequence_breakers.size());
                        for (const auto & str : params.dry_sequence_breakers) {
                            c_breakers.push_back(str.c_str());
240
                        }
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

                        llama_sampler_chain_add(result->chain, llama_sampler_init_dry      (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
                    }
                    break;
                case COMMON_SAMPLER_TYPE_TOP_K:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_k       (params.top_k));
                    break;
                case COMMON_SAMPLER_TYPE_TOP_P:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_p       (params.top_p, params.min_keep));
                    break;
                case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
                    break;
                case COMMON_SAMPLER_TYPE_MIN_P:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_min_p       (params.min_p, params.min_keep));
                    break;
                case COMMON_SAMPLER_TYPE_XTC:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_xtc         (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
                    break;
                case COMMON_SAMPLER_TYPE_TYPICAL_P:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_typical     (params.typ_p, params.min_keep));
                    break;
                case COMMON_SAMPLER_TYPE_TEMPERATURE:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext    (params.temp, params.dynatemp_range, params.dynatemp_exponent));
                    break;
                case COMMON_SAMPLER_TYPE_INFILL:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_infill      (vocab));
                    break;
                case COMMON_SAMPLER_TYPE_PENALTIES:
                    llama_sampler_chain_add(result->chain, llama_sampler_init_penalties   (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
                    break;
                default:
                    GGML_ASSERT(false && "unknown sampler type");
274
275
            }
        }
276
277
278
        llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
    } else if (params.mirostat == 1) {
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
279
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
280
281
282
    } else if (params.mirostat == 2) {
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
283
    } else {
284
        GGML_ASSERT(false && "unknown mirostat version");
285
286
287
288
289
    }

    return result;
}

290
void common_sampler_free(struct common_sampler * gsmpl) {
291
292
293
294
295
296
    if (gsmpl) {
        llama_sampler_free(gsmpl->grmr);

        llama_sampler_free(gsmpl->chain);

        delete gsmpl;
297
298
299
    }
}

300
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
301
302
303
    if (accept_grammar) {
        llama_sampler_accept(gsmpl->grmr, token);
    }
304

305
    llama_sampler_accept(gsmpl->chain, token);
306

307
    gsmpl->prev.push_back(token);
308
309
}

310
void common_sampler_reset(struct common_sampler * gsmpl) {
311
    llama_sampler_reset(gsmpl->grmr);
312

313
    llama_sampler_reset(gsmpl->chain);
314
315
}

316
317
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
    return new common_sampler {
318
319
320
321
322
323
324
        /* .params = */ gsmpl->params,
        /* .grmr   = */ llama_sampler_clone(gsmpl->grmr),
        /* .chain  = */ llama_sampler_clone(gsmpl->chain),
        /* .prev   = */ gsmpl->prev,
        /* .cur    = */ gsmpl->cur,
        /* .cur_p  = */ gsmpl->cur_p,
    };
325
326
}

327
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
328
    // TODO: measure grammar performance
329

330
331
332
333
334
    if (gsmpl) {
        llama_perf_sampler_print(gsmpl->chain);
    }
    if (ctx) {
        llama_perf_context_print(ctx);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
335
        llama_memory_breakdown_print(ctx);
336
337
    }
}
338

339
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
340
    gsmpl->set_logits(ctx, idx);
341

342
343
344
    auto & grmr  = gsmpl->grmr;
    auto & chain = gsmpl->chain;
    auto & cur_p = gsmpl->cur_p; // initialized by set_logits
345

346
347
    if (grammar_first) {
        llama_sampler_apply(grmr, &cur_p);
348
349
    }

350
    llama_sampler_apply(chain, &cur_p);
351

352
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
353

354
    const llama_token id = cur_p.data[cur_p.selected].id;
355

356
357
358
    if (grammar_first) {
        return id;
    }
359

360
361
362
363
    // check if it the sampled token fits the grammar
    {
        llama_token_data       single_token_data       = { id, 1.0f, 0.0f };
        llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
364

365
        llama_sampler_apply(grmr, &single_token_data_array);
366

367
368
369
        const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
        if (is_valid) {
            return id;
370
371
372
        }
    }

373
374
375
    // resampling:
    // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
    gsmpl->set_logits(ctx, idx);
376

377
378
    llama_sampler_apply(grmr,  &cur_p);
    llama_sampler_apply(chain, &cur_p);
379

380
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
381

382
383
    return cur_p.data[cur_p.selected].id;
}
384

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
    GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");

    std::vector<llama_token> result;
    result.reserve(idxs.size());

    size_t i = 0;
    for (; i < draft.size(); i++) {
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);

        common_sampler_accept(gsmpl, id, true);

        result.push_back(id);

        if (draft[i] != id) {
            break;
        }
    }

    if (i == draft.size()) {
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);

        common_sampler_accept(gsmpl, id, true);

        result.push_back(id);
    }

    return result;
}

std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
    std::vector<int> idxs(draft.size() + 1);
    for (size_t i = 0; i < idxs.size(); ++i) {
        idxs[i] = i;
    }

    return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
}

uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
425
426
427
428
    return llama_sampler_get_seed(gsmpl->chain);
}

// helpers
429

Daniel Hiltgen's avatar
Daniel Hiltgen committed
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
    auto * res = &gsmpl->cur_p;

    if (do_sort && !res->sorted) {
        // remember the selected token before sorting
        const llama_token id = res->data[res->selected].id;

        std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) {
            return a.p > b.p;
        });

        // restore the selected token after sorting
        for (size_t i = 0; i < res->size; ++i) {
            if (res->data[i].id == id) {
                res->selected = i;
                break;
            }
        }

        res->sorted = true;
    }

    return res;
453
}
454

455
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
456
457
    return gsmpl->prev.rat(0);
}
458

459
std::string common_sampler_print(const struct common_sampler * gsmpl) {
460
    std::string result = "logits ";
461

462
463
464
    for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
        const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
        result += std::string("-> ") + llama_sampler_name(smpl) + " ";
465
466
    }

467
468
469
    return result;
}

470
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
471
472
473
474
    n = std::min(n, (int) gsmpl->prev.size());

    if (n <= 0) {
        return "";
475
476
    }

477
478
479
480
481
482
483
484
    std::string result;
    result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab

    for (int i = n - 1; i >= 0; i--) {
        const llama_token id = gsmpl->prev.rat(i);

        GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");

485
        result += common_token_to_piece(ctx_main, id);
486
487
    }

488
489
490
    return result;
}

491
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
492
    switch (cnstr) {
493
494
495
496
        case COMMON_SAMPLER_TYPE_DRY:         return 'd';
        case COMMON_SAMPLER_TYPE_TOP_K:       return 'k';
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return 'y';
        case COMMON_SAMPLER_TYPE_TOP_P:       return 'p';
497
        case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return 's';
498
499
500
501
        case COMMON_SAMPLER_TYPE_MIN_P:       return 'm';
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
        case COMMON_SAMPLER_TYPE_XTC:         return 'x';
        case COMMON_SAMPLER_TYPE_INFILL:      return 'i';
502
        case COMMON_SAMPLER_TYPE_PENALTIES:   return 'e';
503
504
505
        default : return '?';
    }
}
506

507
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
508
    switch (cnstr) {
509
510
511
512
        case COMMON_SAMPLER_TYPE_DRY:         return "dry";
        case COMMON_SAMPLER_TYPE_TOP_K:       return "top_k";
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return "typ_p";
        case COMMON_SAMPLER_TYPE_TOP_P:       return "top_p";
513
        case COMMON_SAMPLER_TYPE_TOP_N_SIGMA: return "top_n_sigma";
514
515
516
517
        case COMMON_SAMPLER_TYPE_MIN_P:       return "min_p";
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
        case COMMON_SAMPLER_TYPE_XTC:         return "xtc";
        case COMMON_SAMPLER_TYPE_INFILL:      return "infill";
518
        case COMMON_SAMPLER_TYPE_PENALTIES:   return "penalties";
519
        default : return "";
520
    }
521
}
522

523
524
525
526
527
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
    std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
        { "dry",         COMMON_SAMPLER_TYPE_DRY },
        { "top_k",       COMMON_SAMPLER_TYPE_TOP_K },
        { "top_p",       COMMON_SAMPLER_TYPE_TOP_P },
528
        { "top_n_sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
529
530
531
532
533
        { "typ_p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "min_p",       COMMON_SAMPLER_TYPE_MIN_P },
        { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
        { "xtc",         COMMON_SAMPLER_TYPE_XTC },
        { "infill",      COMMON_SAMPLER_TYPE_INFILL },
534
        { "penalties",   COMMON_SAMPLER_TYPE_PENALTIES },
535
    };
536

537
538
    // since samplers names are written multiple ways
    // make it ready for both system names and input names
539
540
541
    std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
        { "top-k",       COMMON_SAMPLER_TYPE_TOP_K },
        { "top-p",       COMMON_SAMPLER_TYPE_TOP_P },
542
        { "top-n-sigma", COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
543
544
545
546
547
548
549
        { "nucleus",     COMMON_SAMPLER_TYPE_TOP_P },
        { "typical-p",   COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typical",     COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typ-p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typ",         COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "min-p",       COMMON_SAMPLER_TYPE_MIN_P },
        { "temp",        COMMON_SAMPLER_TYPE_TEMPERATURE },
550
    };
551

552
    std::vector<common_sampler_type> samplers;
553
    samplers.reserve(names.size());
554

555
556
557
558
    for (const auto & name : names) {
        auto sampler = sampler_canonical_name_map.find(name);
        if (sampler != sampler_canonical_name_map.end()) {
            samplers.push_back(sampler->second);
559
560
561
562
563
564
565
            continue;
        }
        if (allow_alt_names) {
            sampler = sampler_alt_name_map.find(name);
            if (sampler != sampler_alt_name_map.end()) {
                samplers.push_back(sampler->second);
                continue;
566
567
            }
        }
568
        LOG_WRN("%s: unable to match sampler by name '%s'\n", __func__, name.c_str());
569
570
    }

571
    return samplers;
572
573
}

574
575
576
577
578
579
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
    std::unordered_map<char, common_sampler_type> sampler_name_map = {
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY),         COMMON_SAMPLER_TYPE_DRY },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K),       COMMON_SAMPLER_TYPE_TOP_K },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P),   COMMON_SAMPLER_TYPE_TYPICAL_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P),       COMMON_SAMPLER_TYPE_TOP_P },
580
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_N_SIGMA), COMMON_SAMPLER_TYPE_TOP_N_SIGMA },
581
582
583
584
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P),       COMMON_SAMPLER_TYPE_MIN_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC),         COMMON_SAMPLER_TYPE_XTC },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL),      COMMON_SAMPLER_TYPE_INFILL },
585
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES),   COMMON_SAMPLER_TYPE_PENALTIES },
586
    };
587

588
    std::vector<common_sampler_type> samplers;
589
    samplers.reserve(chars.size());
590

591
592
593
594
    for (const auto & c : chars) {
        const auto sampler = sampler_name_map.find(c);
        if (sampler != sampler_name_map.end()) {
            samplers.push_back(sampler->second);
595
596
        } else {
            LOG_WRN("%s: unable to match sampler by char '%c'\n", __func__, c);
597
        }
598
    }
599
600

    return samplers;
601
}