sampling.cpp 20.8 KB
Newer Older
1
2
#include "sampling.h"

3
#include "common.h"
4

5
6
#include <cmath>
#include <unordered_map>
7
#include <algorithm>
8

9
10
11
12
13
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
template<typename T>
struct ring_buffer {
    ring_buffer(size_t cap) : capacity(cap), data(cap) {}
14

15
16
17
    T & front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
18
        }
19
20
        return data[first];
    }
21

22
23
24
    const T & front() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
25
        }
26
27
        return data[first];
    }
28

29
30
31
    T & back() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
32
        }
33
        return data[pos];
34
35
    }

36
37
38
39
40
    const T & back() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
41
42
    }

43
44
45
46
47
48
49
50
51
    void push_back(const T & value) {
        if (sz == capacity) {
            // advance the start when buffer is full
            first = (first + 1) % capacity;
        } else {
            sz++;
        }
        data[pos] = value;
        pos = (pos + 1) % capacity;
52
53
    }

54
55
56
57
58
59
60
61
62
    T pop_front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        T value = data[first];
        first = (first + 1) % capacity;
        sz--;
        return value;
    }
63

64
65
66
    const T & rat(size_t i) const {
        if (i >= sz) {
            throw std::runtime_error("ring buffer: index out of bounds");
67
        }
68
        return data[(first + sz - i - 1) % capacity];
69
70
    }

71
72
73
74
75
76
77
78
    std::vector<T> to_vector() const {
        std::vector<T> result;
        result.reserve(sz);
        for (size_t i = 0; i < sz; i++) {
            result.push_back(data[(first + i) % capacity]);
        }
        return result;
    }
79

80
81
82
83
84
    void clear() {
        // here only reset the status of the buffer
        sz = 0;
        first = 0;
        pos = 0;
85
86
    }

87
88
    bool empty() const {
        return sz == 0;
89
90
    }

91
92
    size_t size() const {
        return sz;
93
94
    }

95
96
97
98
99
100
    size_t capacity = 0;
    size_t sz = 0;
    size_t first = 0;
    size_t pos = 0;
    std::vector<T> data;
};
101

102
103
struct common_sampler {
    common_params_sampling params;
104

105
106
    struct llama_sampler * grmr;
    struct llama_sampler * chain;
107

108
    ring_buffer<llama_token> prev;
109

110
    std::vector<llama_token_data> cur;
111

112
    llama_token_data_array cur_p;
113

114
115
    void set_logits(struct llama_context * ctx, int idx) {
        const auto * logits = llama_get_logits_ith(ctx, idx);
116

117
118
119
120
        const llama_model * model = llama_get_model(ctx);
        const llama_vocab * vocab = llama_model_get_vocab(model);

        const int n_vocab = llama_vocab_n_tokens(vocab);
121
122
123
124
125
126
127
128
129
130
131

        cur.resize(n_vocab);

        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
        }

        cur_p = { cur.data(), cur.size(), -1, false };
    }
};

132
std::string common_params_sampling::print() const {
133
134
135
136
    char result[1024];

    snprintf(result, sizeof(result),
            "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
137
            "\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
138
            "\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
139
            "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
140
            penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
141
            dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
142
            top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
143
            mirostat, mirostat_eta, mirostat_tau);
144
145
146
147

    return std::string(result);
}

148
struct common_sampler * common_sampler_init(const struct llama_model * model, const struct common_params_sampling & params) {
149
150
    const llama_vocab * vocab = llama_model_get_vocab(model);

151
152
153
154
    llama_sampler_chain_params lparams = llama_sampler_chain_default_params();

    lparams.no_perf = params.no_perf;

155
156
157
158
159
160
161
162
    struct llama_sampler * grmr;
    if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
        grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
        GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
    } else {
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        std::vector<std::string> patterns_at_start;
        std::vector<std::string> patterns_anywhere;
        std::vector<llama_token> trigger_tokens;
        for (const auto & trigger : params.grammar_triggers) {
            switch (trigger.type) {
                case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
                {
                    const auto & word = trigger.value;
                    patterns_anywhere.push_back(regex_escape(word));
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
                case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
                {
                    const auto & pattern = trigger.value;
                    (trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
                    break;
                }
                case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
                {
                    const auto token = trigger.token;
                    trigger_tokens.push_back(token);
                    break;
                }
                default:
                    GGML_ASSERT(false && "unknown trigger type");
            }
        }

        std::vector<std::string> trigger_patterns;
        if (!patterns_at_start.empty()) {
            trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
        }
        if (!patterns_anywhere.empty()) {
            trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
        }

        std::vector<const char *> trigger_patterns_c;
        trigger_patterns_c.reserve(trigger_patterns.size());
        for (const auto & regex : trigger_patterns) {
            trigger_patterns_c.push_back(regex.c_str());
204
205
206
        }

        grmr = params.grammar_lazy
207
208
209
             ? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
                                                        trigger_patterns_c.data(), trigger_patterns_c.size(),
                                                        trigger_tokens.data(), trigger_tokens.size())
210
             :      llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
211
212
213
        if (!grmr) {
            return nullptr;
        }
214
215
    }

216
    auto * result = new common_sampler {
217
        /* .params = */ params,
218
        /* .grmr   = */ grmr,
219
220
221
222
223
224
225
226
        /* .chain  = */ llama_sampler_chain_init(lparams),
        /* .prev   = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
        /* .cur    = */ {},
        /* .cur_p  = */ {},
    };

    llama_sampler_chain_add(result->chain,
            llama_sampler_init_logit_bias(
227
                llama_vocab_n_tokens(vocab),
228
229
230
                params.logit_bias.size(),
                params.logit_bias.data()));

231
    if (params.mirostat == 0) {
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        if (params.top_n_sigma >= 0) {
            llama_sampler_chain_add(result->chain, llama_sampler_init_top_k        (params.top_k));
            llama_sampler_chain_add(result->chain, llama_sampler_init_temp         (params.temp));
            llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma  (params.top_n_sigma));
        } else {
            for (const auto & cnstr : params.samplers) {
                switch (cnstr) {
                    case COMMON_SAMPLER_TYPE_DRY:
                        {
                            std::vector<const char *> c_breakers;
                            c_breakers.reserve(params.dry_sequence_breakers.size());
                            for (const auto & str : params.dry_sequence_breakers) {
                                c_breakers.push_back(str.c_str());
                            }

                            llama_sampler_chain_add(result->chain, llama_sampler_init_dry      (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
248
                        }
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
                        break;
                    case COMMON_SAMPLER_TYPE_TOP_K:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_top_k    (params.top_k));
                        break;
                    case COMMON_SAMPLER_TYPE_TOP_P:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_top_p    (params.top_p, params.min_keep));
                        break;
                    case COMMON_SAMPLER_TYPE_MIN_P:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_min_p    (params.min_p, params.min_keep));
                        break;
                    case COMMON_SAMPLER_TYPE_XTC:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_xtc      (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
                        break;
                    case COMMON_SAMPLER_TYPE_TYPICAL_P:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_typical  (params.typ_p, params.min_keep));
                        break;
                    case COMMON_SAMPLER_TYPE_TEMPERATURE:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
                        break;
                    case COMMON_SAMPLER_TYPE_INFILL:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_infill   (vocab));
                        break;
                    case COMMON_SAMPLER_TYPE_PENALTIES:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
                        break;
                    default:
                        GGML_ASSERT(false && "unknown sampler type");
                }
277
278
            }
        }
279
280
281
        llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
    } else if (params.mirostat == 1) {
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
282
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
283
284
285
    } else if (params.mirostat == 2) {
        llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
        llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
286
    } else {
287
        GGML_ASSERT(false && "unknown mirostat version");
288
289
290
291
292
    }

    return result;
}

293
void common_sampler_free(struct common_sampler * gsmpl) {
294
295
296
297
298
299
    if (gsmpl) {
        llama_sampler_free(gsmpl->grmr);

        llama_sampler_free(gsmpl->chain);

        delete gsmpl;
300
301
302
    }
}

303
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
304
305
306
    if (accept_grammar) {
        llama_sampler_accept(gsmpl->grmr, token);
    }
307

308
    llama_sampler_accept(gsmpl->chain, token);
309

310
    gsmpl->prev.push_back(token);
311
312
}

313
void common_sampler_reset(struct common_sampler * gsmpl) {
314
    llama_sampler_reset(gsmpl->grmr);
315

316
    llama_sampler_reset(gsmpl->chain);
317
318
}

319
320
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
    return new common_sampler {
321
322
323
324
325
326
327
        /* .params = */ gsmpl->params,
        /* .grmr   = */ llama_sampler_clone(gsmpl->grmr),
        /* .chain  = */ llama_sampler_clone(gsmpl->chain),
        /* .prev   = */ gsmpl->prev,
        /* .cur    = */ gsmpl->cur,
        /* .cur_p  = */ gsmpl->cur_p,
    };
328
329
}

330
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
331
    // TODO: measure grammar performance
332

333
334
335
336
337
338
339
    if (gsmpl) {
        llama_perf_sampler_print(gsmpl->chain);
    }
    if (ctx) {
        llama_perf_context_print(ctx);
    }
}
340

341
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
342
    gsmpl->set_logits(ctx, idx);
343

344
345
346
    auto & grmr  = gsmpl->grmr;
    auto & chain = gsmpl->chain;
    auto & cur_p = gsmpl->cur_p; // initialized by set_logits
347

348
349
    if (grammar_first) {
        llama_sampler_apply(grmr, &cur_p);
350
351
    }

352
    llama_sampler_apply(chain, &cur_p);
353

354
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
355

356
    const llama_token id = cur_p.data[cur_p.selected].id;
357

358
359
360
    if (grammar_first) {
        return id;
    }
361

362
363
364
365
    // check if it the sampled token fits the grammar
    {
        llama_token_data       single_token_data       = { id, 1.0f, 0.0f };
        llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
366

367
        llama_sampler_apply(grmr, &single_token_data_array);
368

369
370
371
        const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
        if (is_valid) {
            return id;
372
373
374
        }
    }

375
376
377
    // resampling:
    // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
    gsmpl->set_logits(ctx, idx);
378

379
380
    llama_sampler_apply(grmr,  &cur_p);
    llama_sampler_apply(chain, &cur_p);
381

382
    GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
383

384
385
    return cur_p.data[cur_p.selected].id;
}
386

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
    GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");

    std::vector<llama_token> result;
    result.reserve(idxs.size());

    size_t i = 0;
    for (; i < draft.size(); i++) {
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);

        common_sampler_accept(gsmpl, id, true);

        result.push_back(id);

        if (draft[i] != id) {
            break;
        }
    }

    if (i == draft.size()) {
        const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);

        common_sampler_accept(gsmpl, id, true);

        result.push_back(id);
    }

    return result;
}

std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
    std::vector<int> idxs(draft.size() + 1);
    for (size_t i = 0; i < idxs.size(); ++i) {
        idxs[i] = i;
    }

    return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
}

uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
427
428
429
430
    return llama_sampler_get_seed(gsmpl->chain);
}

// helpers
431

432
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
433
434
    return &gsmpl->cur_p;
}
435

436
llama_token common_sampler_last(const struct common_sampler * gsmpl) {
437
438
    return gsmpl->prev.rat(0);
}
439

440
std::string common_sampler_print(const struct common_sampler * gsmpl) {
441
    std::string result = "logits ";
442

443
444
445
    for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
        const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
        result += std::string("-> ") + llama_sampler_name(smpl) + " ";
446
447
    }

448
449
450
    return result;
}

451
std::string common_sampler_prev_str(common_sampler * gsmpl, llama_context * ctx_main, int n) {
452
453
454
455
    n = std::min(n, (int) gsmpl->prev.size());

    if (n <= 0) {
        return "";
456
457
    }

458
459
460
461
462
463
464
465
    std::string result;
    result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab

    for (int i = n - 1; i >= 0; i--) {
        const llama_token id = gsmpl->prev.rat(i);

        GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");

466
        result += common_token_to_piece(ctx_main, id);
467
468
    }

469
470
471
    return result;
}

472
char common_sampler_type_to_chr(enum common_sampler_type cnstr) {
473
    switch (cnstr) {
474
475
476
477
478
479
480
481
        case COMMON_SAMPLER_TYPE_DRY:         return 'd';
        case COMMON_SAMPLER_TYPE_TOP_K:       return 'k';
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return 'y';
        case COMMON_SAMPLER_TYPE_TOP_P:       return 'p';
        case COMMON_SAMPLER_TYPE_MIN_P:       return 'm';
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return 't';
        case COMMON_SAMPLER_TYPE_XTC:         return 'x';
        case COMMON_SAMPLER_TYPE_INFILL:      return 'i';
482
        case COMMON_SAMPLER_TYPE_PENALTIES:   return 'e';
483
484
485
        default : return '?';
    }
}
486

487
std::string common_sampler_type_to_str(enum common_sampler_type cnstr) {
488
    switch (cnstr) {
489
490
491
492
493
494
495
496
        case COMMON_SAMPLER_TYPE_DRY:         return "dry";
        case COMMON_SAMPLER_TYPE_TOP_K:       return "top_k";
        case COMMON_SAMPLER_TYPE_TYPICAL_P:   return "typ_p";
        case COMMON_SAMPLER_TYPE_TOP_P:       return "top_p";
        case COMMON_SAMPLER_TYPE_MIN_P:       return "min_p";
        case COMMON_SAMPLER_TYPE_TEMPERATURE: return "temperature";
        case COMMON_SAMPLER_TYPE_XTC:         return "xtc";
        case COMMON_SAMPLER_TYPE_INFILL:      return "infill";
497
        case COMMON_SAMPLER_TYPE_PENALTIES:   return "penalties";
498
        default : return "";
499
    }
500
}
501

502
503
504
505
506
507
508
509
510
511
std::vector<common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
    std::unordered_map<std::string, common_sampler_type> sampler_canonical_name_map {
        { "dry",         COMMON_SAMPLER_TYPE_DRY },
        { "top_k",       COMMON_SAMPLER_TYPE_TOP_K },
        { "top_p",       COMMON_SAMPLER_TYPE_TOP_P },
        { "typ_p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "min_p",       COMMON_SAMPLER_TYPE_MIN_P },
        { "temperature", COMMON_SAMPLER_TYPE_TEMPERATURE },
        { "xtc",         COMMON_SAMPLER_TYPE_XTC },
        { "infill",      COMMON_SAMPLER_TYPE_INFILL },
512
        { "penalties",   COMMON_SAMPLER_TYPE_PENALTIES },
513
    };
514

515
516
    // since samplers names are written multiple ways
    // make it ready for both system names and input names
517
518
519
520
521
522
523
524
525
526
    std::unordered_map<std::string, common_sampler_type> sampler_alt_name_map {
        { "top-k",       COMMON_SAMPLER_TYPE_TOP_K },
        { "top-p",       COMMON_SAMPLER_TYPE_TOP_P },
        { "nucleus",     COMMON_SAMPLER_TYPE_TOP_P },
        { "typical-p",   COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typical",     COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typ-p",       COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "typ",         COMMON_SAMPLER_TYPE_TYPICAL_P },
        { "min-p",       COMMON_SAMPLER_TYPE_MIN_P },
        { "temp",        COMMON_SAMPLER_TYPE_TEMPERATURE },
527
    };
528

529
    std::vector<common_sampler_type> samplers;
530
    samplers.reserve(names.size());
531

532
533
534
535
536
537
538
539
540
    for (const auto & name : names) {
        auto sampler = sampler_canonical_name_map.find(name);
        if (sampler != sampler_canonical_name_map.end()) {
            samplers.push_back(sampler->second);
        } else {
            if (allow_alt_names) {
                sampler = sampler_alt_name_map.find(name);
                if (sampler != sampler_alt_name_map.end()) {
                    samplers.push_back(sampler->second);
541
542
543
544
545
                }
            }
        }
    }

546
    return samplers;
547
548
}

549
550
551
552
553
554
555
556
557
558
std::vector<common_sampler_type> common_sampler_types_from_chars(const std::string & chars) {
    std::unordered_map<char, common_sampler_type> sampler_name_map = {
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_DRY),         COMMON_SAMPLER_TYPE_DRY },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_K),       COMMON_SAMPLER_TYPE_TOP_K },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TYPICAL_P),   COMMON_SAMPLER_TYPE_TYPICAL_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TOP_P),       COMMON_SAMPLER_TYPE_TOP_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_MIN_P),       COMMON_SAMPLER_TYPE_MIN_P },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_TEMPERATURE), COMMON_SAMPLER_TYPE_TEMPERATURE },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_XTC),         COMMON_SAMPLER_TYPE_XTC },
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_INFILL),      COMMON_SAMPLER_TYPE_INFILL },
559
        { common_sampler_type_to_chr(COMMON_SAMPLER_TYPE_PENALTIES),   COMMON_SAMPLER_TYPE_PENALTIES },
560
    };
561

562
    std::vector<common_sampler_type> samplers;
563
    samplers.reserve(chars.size());
564

565
566
567
568
569
    for (const auto & c : chars) {
        const auto sampler = sampler_name_map.find(c);
        if (sampler != sampler_name_map.end()) {
            samplers.push_back(sampler->second);
        }
570
    }
571
572

    return samplers;
573
}