common.cpp 52.6 KB
Newer Older
1
2
3
4
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif

5
6
7
#include "ggml.h"
#include "gguf.h"

8
#include "common.h"
9
#include "log.h"
10
11
12
13
#include "llama.h"

#include <algorithm>
#include <cinttypes>
14
#include <climits>
15
16
#include <cmath>
#include <codecvt>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
17
#include <chrono>
18
19
20
#include <cstdarg>
#include <cstring>
#include <ctime>
21
#include <filesystem>
22
23
24
25
26
27
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <string>
28
#include <thread>
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include <unordered_map>
#include <unordered_set>
#include <vector>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <locale>
#include <windows.h>
Daniel Hiltgen's avatar
Daniel Hiltgen committed
45
#include <string.h>
46
47
48
49
50
51
52
53
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
54
55
56
57
58
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

//
// CPU utils
//

int32_t cpu_get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    unsigned int n_threads_win = std::thread::hardware_concurrency();
    unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;

    DWORD buffer_size = 0;
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
        if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
            return default_threads;
        }
    }

    std::vector<char> buffer(buffer_size);
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
        return default_threads;
    }

    int32_t num_physical_cores = 0;
    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
    while (buffer_size > 0) {
        if (info->Relationship == RelationProcessorCore) {
            num_physical_cores += info->Processor.GroupCount;
        }
        buffer_size -= info->Size;
        info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
    }

    return num_physical_cores > 0 ? num_physical_cores : default_threads;
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
                  unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
    __asm__("movq\t%%rbx,%%rsi\n\t"
            "cpuid\n\t"
            "xchgq\t%%rbx,%%rsi"
            : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
            : "0"(leaf), "2"(subleaf));
}

static int pin_cpu(int cpu) {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);
    return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}

static bool is_hybrid_cpu(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(7, 0, &eax, &ebx, &ecx, &edx);
    return !!(edx & (1u << 15));
}

static bool is_running_on_efficiency_core(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
    int intel_atom = 0x20;
    int core_type = (eax & 0xff000000u) >> 24;
    return core_type == intel_atom;
}

static int cpu_count_math_cpus(int n_cpu) {
    int result = 0;
    for (int cpu = 0; cpu < n_cpu; ++cpu) {
        if (pin_cpu(cpu)) {
166
            return -1;
167
        }
168
169
        if (is_running_on_efficiency_core()) {
            continue; // efficiency cores harm lockstep threading
170
        }
171
172
        ++cpu; // hyperthreading isn't useful for linear algebra
        ++result;
173
    }
174
175
176
177
178
179
180
181
182
183
184
185
186
    return result;
}

#endif // __x86_64__ && __linux__

/**
 * Returns number of CPUs on system that are useful for math.
 */
int32_t cpu_get_num_math() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
    int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
    if (n_cpu < 1) {
        return cpu_get_num_physical_cores();
187
    }
188
189
190
191
192
193
194
195
    if (is_hybrid_cpu()) {
        cpu_set_t affinity;
        if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
            int result = cpu_count_math_cpus(n_cpu);
            pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
            if (result > 0) {
                return result;
            }
196
197
        }
    }
198
199
200
201
202
203
204
205
206
207
#endif
    return cpu_get_num_physical_cores();
}

// Helper for setting process priority

#if defined(_WIN32)

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
208
209
        return true;
    }
210
211
212

    DWORD p = NORMAL_PRIORITY_CLASS;
    switch (prio) {
213
        case GGML_SCHED_PRIO_LOW:      p = BELOW_NORMAL_PRIORITY_CLASS; break;
214
215
216
217
        case GGML_SCHED_PRIO_NORMAL:   p = NORMAL_PRIORITY_CLASS;       break;
        case GGML_SCHED_PRIO_MEDIUM:   p = ABOVE_NORMAL_PRIORITY_CLASS; break;
        case GGML_SCHED_PRIO_HIGH:     p = HIGH_PRIORITY_CLASS;         break;
        case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS;     break;
218
    }
219
220
221
222

    if (!SetPriorityClass(GetCurrentProcess(), p)) {
        LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
        return false;
223
    }
224
225
226
227
228
229
230
231
232
233

    return true;
}

#else // MacOS and POSIX
#include <sys/types.h>
#include <sys/resource.h>

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
234
235
        return true;
    }
236
237
238

    int p = 0;
    switch (prio) {
239
        case GGML_SCHED_PRIO_LOW:      p =  5;  break;
240
241
242
243
        case GGML_SCHED_PRIO_NORMAL:   p =  0;  break;
        case GGML_SCHED_PRIO_MEDIUM:   p = -5;  break;
        case GGML_SCHED_PRIO_HIGH:     p = -10; break;
        case GGML_SCHED_PRIO_REALTIME: p = -20; break;
244
    }
245
246
247
248

    if (!setpriority(PRIO_PROCESS, 0, p)) {
        LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
        return false;
249
    }
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    return true;
}

#endif

//
// CLI argument parsing
//


void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
    int32_t n_set = 0;

    if (cpuparams.n_threads < 0) {
        // Assuming everything about cpuparams is invalid
        if (role_model != nullptr) {
            cpuparams = *role_model;
        } else {
            cpuparams.n_threads = cpu_get_num_math();
        }
270
    }
271
272
273
274
275

    for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
        if (cpuparams.cpumask[i]) {
            n_set++;
        }
276
    }
277
278
279
280

    if (n_set && n_set < cpuparams.n_threads) {
        // Not enough set bits, may experience performance issues.
        LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
281
    }
282
283
284
285
286
287
288
}

bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    size_t dash_loc = range.find('-');
    if (dash_loc == std::string::npos) {
        LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
        return false;
289
    }
290
291
292
293
294
295
296
297
298
299
300
301

    size_t start_i;
    size_t end_i;

    if (dash_loc == 0) {
        start_i = 0;
    } else {
        start_i = std::stoull(range.substr(0, dash_loc));
        if (start_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("Start index out of bounds!\n");
            return false;
        }
302
    }
303
304
305
306
307
308
309
310

    if (dash_loc == range.length() - 1) {
        end_i = GGML_MAX_N_THREADS - 1;
    } else {
        end_i = std::stoull(range.substr(dash_loc + 1));
        if (end_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("End index out of bounds!\n");
            return false;
311
312
313
        }
    }

314
315
316
317
318
    for (size_t i = start_i; i <= end_i; i++) {
        boolmask[i] = true;
    }

    return true;
319
320
}

321
322
323
324
325
326
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    // Discard potential 0x prefix
    size_t start_i = 0;
    if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
        start_i = 2;
    }
327

328
329
    size_t num_digits = mask.length() - start_i;
    if (num_digits > 128) num_digits = 128;
330

331
    size_t end_i = num_digits + start_i;
332

333
334
335
336
337
338
339
340
341
342
343
344
345
    for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
        char c = mask.at(i);
        int8_t id = c;

        if ((c >= '0' && c <= '9')) {
            id -= '0';
        } else if (c >= 'a' && c <= 'f') {
            id -= 'a' - 10;
        } else if (c >= 'A' && c <= 'F') {
            id -= 'A' - 10;
        } else {
            LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
            return false;
346
347
        }

348
349
350
351
352
353
354
355
356
        boolmask[  n  ] = boolmask[  n  ] || ((id & 8) != 0);
        boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
        boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
        boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
    }

    return true;
}

357
void common_init() {
358
    llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
359
360
        if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
            common_log_add(common_log_main(), level, "%s", text);
361
362
        }
    }, NULL);
363

364
365
366
367
368
#ifdef NDEBUG
    const char * build_type = "";
#else
    const char * build_type = " (debug)";
#endif
369

370
    LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
371
372
}

373
std::string common_params_get_system_info(const common_params & params) {
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    std::ostringstream os;

    os << "system_info: n_threads = " << params.cpuparams.n_threads;
    if (params.cpuparams_batch.n_threads != -1) {
        os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
    }
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
    os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
#else
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
#endif

    return os.str();
}

//
// String utils
//

395
396
397
398
399
400
401
402
403
404
405
406
407
std::string string_format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), size);
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
}

std::string string_strip(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && std::isspace(str[start])) {
        start++;
    }
    while (end > start && std::isspace(str[end - 1])) {
        end--;
    }
    return str.substr(start, end - start);
}

std::string string_get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
    if (search.empty()) {
        return;
    }
    std::string builder;
    builder.reserve(s.length());
    size_t pos = 0;
    size_t last_pos = 0;
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
        builder.append(s, last_pos, pos - last_pos);
        builder.append(replace);
        last_pos = pos + search.length();
    }
    builder.append(s, last_pos, std::string::npos);
    s = std::move(builder);
}

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
    return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}

bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
    bool has_suffix = string_ends_with(str, suffix);
    if (has_suffix) {
        str = str.substr(0, str.size() - suffix.size());
    }
    return has_suffix;
}

size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
    if (!str.empty() && !stop.empty()) {
        const char text_last_char = str.back();
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
            if (stop[char_index] == text_last_char) {
                const auto current_partial = stop.substr(0, char_index + 1);
                if (string_ends_with(str, current_partial)) {
                    return str.size() - char_index - 1;
                }
            }
        }
    }

    return std::string::npos;
}

483
484
std::string regex_escape(const std::string & s) {
    static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
485
    return std::regex_replace(s, special_chars, "\\$&");
486
487
}

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
    std::ostringstream result;
    for (size_t i = 0; i < values.size(); ++i) {
        if (i > 0) {
            result << separator;
        }
        result << values[i];
    }
    return result.str();
}

std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
    std::vector<std::string> parts;
    size_t start = 0;
    size_t end = str.find(delimiter);

    while (end != std::string::npos) {
        parts.push_back(str.substr(start, end - start));
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    parts.push_back(str.substr(start));

    return parts;
}

std::string string_repeat(const std::string & str, size_t n) {
    if (n == 0) {
        return "";
    }

    std::string result;
    result.reserve(str.length() * n);

    for (size_t i = 0; i < n; ++i) {
        result += str;
    }

    return result;
}

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
std::string string_from(bool value) {
    return value ? "true" : "false";
}

std::string string_from(const std::vector<int> & values) {
    std::stringstream buf;

    buf << "[ ";
    bool first = true;
    for (auto e : values) {
        if (first) {
            first = false;
        } else {
            buf << ", ";
        }
        buf << std::to_string(e);
    }
    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (const auto & token : tokens) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

565
        auto detokenized = common_token_to_piece(ctx, token);
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

        buf << "'" << detokenized << "'"
            << ":" << std::to_string(token);
    }

    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (int i = 0; i < batch.n_tokens; ++i) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

589
        auto detokenized = common_token_to_piece(ctx, batch.token[i]);
590

591
592
593
594
595
596
        buf << "\n"          << std::to_string(i)
            << ", token '"   << detokenized << "'"
            << ", pos "      << std::to_string(batch.pos[i])
            << ", n_seq_id " << std::to_string(batch.n_seq_id[i])
            << ", seq_id "   << std::to_string(batch.seq_id[i][0])
            << ", logits "   << std::to_string(batch.logits[i]);
597
598
599
600
601
602
603
    }

    buf << " ]";

    return buf.str();
}

604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
void string_process_escapes(std::string & input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                case 'x':
                    // Handle \x12, etc
                    if (input_idx + 2 < input_len) {
                        const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
                        char *err_p = nullptr;
                        const long val = std::strtol(x, &err_p, 16);
                        if (err_p == x + 2) {
                            input_idx += 2;
                            input[output_idx++] = char(val);
                            break;
                        }
                    }
                    // fall through
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
    const char * sep = strchr(data, '=');
    if (sep == nullptr || sep - data >= 128) {
644
        LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
        return false;
    }
    llama_model_kv_override kvo;
    std::strncpy(kvo.key, data, sep - data);
    kvo.key[sep - data] = 0;
    sep++;
    if (strncmp(sep, "int:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
        kvo.val_i64 = std::atol(sep);
    } else if (strncmp(sep, "float:", 6) == 0) {
        sep += 6;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
        kvo.val_f64 = std::atof(sep);
    } else if (strncmp(sep, "bool:", 5) == 0) {
        sep += 5;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
        if (std::strcmp(sep, "true") == 0) {
            kvo.val_bool = true;
        } else if (std::strcmp(sep, "false") == 0) {
            kvo.val_bool = false;
        } else {
667
            LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
668
669
670
671
672
673
            return false;
        }
    } else if (strncmp(sep, "str:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
        if (strlen(sep) > 127) {
674
            LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
675
676
677
678
679
            return false;
        }
        strncpy(kvo.val_str, sep, 127);
        kvo.val_str[127] = '\0';
    } else {
680
        LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        return false;
    }
    overrides.emplace_back(std::move(kvo));
    return true;
}

//
// Filesystem utils
//

// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
    if (!filename.length()) {
        // Empty filename invalid
        return false;
    }
    if (filename.length() > 255) {
        // Limit at common largest possible filename on Linux filesystems
        // to avoid unnecessary further validation
        // (On systems with smaller limits it will be caught by the OS)
        return false;
    }

    std::u32string filename_utf32;
    try {
707
708
709
710
#if defined(__clang__)
        // disable C++17 deprecation warning for std::codecvt_utf8
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
711
712
713
#elif defined(__GNUC__)
#    pragma GCC diagnostic push
#    pragma GCC diagnostic ignored "-Wdeprecated-declarations"
714
#endif
715

716
        std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
717
718
719

#if defined(__clang__)
#    pragma clang diagnostic pop
720
721
#elif defined(__GNUC__)
#    pragma GCC diagnostic pop
722
723
#endif

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
        filename_utf32 = converter.from_bytes(filename);

        // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
        // or invalid encodings were encountered. Reject such attempts
        std::string filename_reencoded = converter.to_bytes(filename_utf32);
        if (filename_reencoded != filename) {
            return false;
        }
    } catch (const std::exception &) {
        return false;
    }

    // Check for forbidden codepoints:
    // - Control characters
    // - Unicode equivalents of illegal characters
    // - UTF-16 surrogate pairs
    // - UTF-8 replacement character
    // - Byte order mark (BOM)
    // - Illegal characters: / \ : * ? " < > |
    for (char32_t c : filename_utf32) {
        if (c <= 0x1F // Control characters (C0)
            || c == 0x7F // Control characters (DEL)
            || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
            || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
            || c == 0x2215 // Division Slash (forward slash equivalent)
            || c == 0x2216 // Set Minus (backslash equivalent)
            || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
            || c == 0xFFFD // Replacement Character (UTF-8)
            || c == 0xFEFF // Byte Order Mark (BOM)
            || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
            || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
            return false;
        }
    }

    // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
    // Unicode and other whitespace is not affected, only 0x20 space
    if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
        return false;
    }

    // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
    if (filename.find("..") != std::string::npos) {
        return false;
    }

    // Reject "."
    if (filename == ".") {
        return false;
    }

    return true;
}

778
779
780
#include <iostream>


781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
    std::wstring wpath = converter.from_bytes(path);

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);

799
800
801
802
803
804
805
806
807
        pos_slash += 1;

        // skip the drive letter, in some systems it can return an access denied error
        if (subpath.length() == 2 && subpath[1] == ':') {
            continue;
        }

        const bool success = CreateDirectoryW(subpath.c_str(), NULL);

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

std::string fs_get_cache_directory() {
    std::string cache_directory = "";
    auto ensure_trailing_slash = [](std::string p) {
        // Make sure to add trailing slash
        if (p.back() != DIRECTORY_SEPARATOR) {
            p += DIRECTORY_SEPARATOR;
        }
        return p;
    };
    if (getenv("LLAMA_CACHE")) {
        cache_directory = std::getenv("LLAMA_CACHE");
    } else {
870
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
871
872
        if (std::getenv("XDG_CACHE_HOME")) {
            cache_directory = std::getenv("XDG_CACHE_HOME");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
873
        } else if (std::getenv("HOME")) {
874
            cache_directory = std::getenv("HOME") + std::string("/.cache/");
Daniel Hiltgen's avatar
Daniel Hiltgen committed
875
876
877
878
879
880
881
882
883
884
885
886
        } else {
#if defined(__linux__)
            /* no $HOME is defined, fallback to getpwuid */
            struct passwd *pw = getpwuid(getuid());
            if ((!pw) || (!pw->pw_dir)) {
                throw std::runtime_error("Failed to find $HOME directory");
            }

            cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
            throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
887
888
889
890
891
        }
#elif defined(__APPLE__)
        cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
        cache_directory = std::getenv("LOCALAPPDATA");
892
893
894
#else
#  error Unknown architecture
#endif
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
        cache_directory = ensure_trailing_slash(cache_directory);
        cache_directory += "llama.cpp";
    }
    return ensure_trailing_slash(cache_directory);
}

std::string fs_get_cache_file(const std::string & filename) {
    GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
    std::string cache_directory = fs_get_cache_directory();
    const bool success = fs_create_directory_with_parents(cache_directory);
    if (!success) {
        throw std::runtime_error("failed to create cache directory: " + cache_directory);
    }
    return cache_directory + filename;
}


//
// Model utils
//
915

916
917
918
struct common_init_result common_init_from_params(common_params & params) {
    common_init_result iparams;
    auto mparams = common_model_params_to_llama(params);
919

920
    llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
921
    if (model == NULL) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
922
923
        LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
            __func__, params.model.path.c_str());
924
925
926
        return iparams;
    }

927
928
    const llama_vocab * vocab = llama_model_get_vocab(model);

929
    auto cparams = common_context_params_to_llama(params);
930

931
    llama_context * lctx = llama_init_from_model(model, cparams);
932
    if (lctx == NULL) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
933
934
        LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
            __func__, params.model.path.c_str());
935
        llama_model_free(model);
936
937
938
        return iparams;
    }

939
    if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
940
        LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
941
        params.ctx_shift = false;
942
943
    }

944
945
    if (!params.control_vectors.empty()) {
        if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
946
        if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_model_n_layer(model);
947

948
        const auto cvec = common_control_vector_load(params.control_vectors);
949
950
        if (cvec.n_embd == -1) {
            llama_free(lctx);
951
            llama_model_free(model);
952

953
954
955
            return iparams;
        }

956
957
958
959
960
961
962
        int err = llama_apply_adapter_cvec(
                lctx,
                cvec.data.data(),
                cvec.data.size(),
                cvec.n_embd,
                params.control_vector_layer_start,
                params.control_vector_layer_end);
963
964
        if (err) {
            llama_free(lctx);
965
            llama_model_free(model);
966

967
968
969
970
            return iparams;
        }
    }

971
972
973
974
975
976
977
978
979
980
    if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
        bool ok = true;

        if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have a  BOS token, reranking will not work\n", __func__);
            ok = false;
        }

        bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
        bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
981
        bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
982

Daniel Hiltgen's avatar
Daniel Hiltgen committed
983
984
        if (!has_eos && !has_sep && !has_rerank_prompt) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
985
986
987
988
989
990
991
992
993
994
995
996
997
            ok = false;
        } else if (!has_eos) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
        }

        if (!ok) {
            llama_free(lctx);
            llama_model_free(model);

            return iparams;
        }
    }

998
999
    // load and optionally apply lora adapters
    for (auto & la : params.lora_adapters) {
1000
1001
        llama_adapter_lora_ptr lora;
        lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
1002
        if (lora == nullptr) {
1003
            LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
1004
            llama_free(lctx);
1005
            llama_model_free(model);
1006
1007
            return iparams;
        }
1008

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1009
        char buf[1024];
1010
        la.ptr = lora.get();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1011
1012
1013
1014
        llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
        la.task_name = buf;
        llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
        la.prompt_prefix = buf;
1015
        iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
1016
    }
1017

1018
    if (!params.lora_init_without_apply) {
1019
        common_set_adapter_lora(lctx, params.lora_adapters);
1020
1021
    }

1022
1023
    if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
        LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
1024
        params.sampling.ignore_eos = false;
1025
1026
    }

1027
1028
1029
1030
1031
    // initialize once
    for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
        if (llama_vocab_is_eog(vocab, i)) {
            LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
            params.sampling.logit_bias_eog.push_back({i, -INFINITY});
1032
1033
1034
        }
    }

1035
1036
1037
1038
1039
1040
1041
    if (params.sampling.ignore_eos) {
        // add EOG biases to the active set of logit biases
        params.sampling.logit_bias.insert(
                params.sampling.logit_bias.end(),
                params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
    }

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
    if (params.sampling.penalty_last_n == -1) {
        LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.penalty_last_n = llama_n_ctx(lctx);
    }

    if (params.sampling.dry_penalty_last_n == -1) {
        LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
    }

1052
    if (params.warmup) {
1053
        LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
1054

1055
1056
        llama_set_warmup(lctx, true);

1057
        std::vector<llama_token> tmp;
1058
1059
1060
        llama_token bos = llama_vocab_bos(vocab);
        llama_token eos = llama_vocab_eos(vocab);

1061
        // some models (e.g. T5) don't have a BOS token
1062
        if (bos != LLAMA_TOKEN_NULL) {
1063
1064
            tmp.push_back(bos);
        }
1065
1066
1067
1068
1069
1070
        if (eos != LLAMA_TOKEN_NULL) {
            tmp.push_back(eos);
        }
        if (tmp.empty()) {
            tmp.push_back(0);
        }
1071
1072

        if (llama_model_has_encoder(model)) {
1073
            llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
1074
            llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
1075
            if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
1076
1077
1078
1079
1080
1081
                decoder_start_token_id = bos;
            }
            tmp.clear();
            tmp.push_back(decoder_start_token_id);
        }
        if (llama_model_has_decoder(model)) {
1082
            llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
1083
        }
1084
        llama_memory_clear(llama_get_memory(lctx), true);
1085
        llama_synchronize(lctx);
1086
        llama_perf_context_reset(lctx);
1087
        llama_set_warmup(lctx, false);
1088
1089
    }

1090
1091
    iparams.model.reset(model);
    iparams.context.reset(lctx);
1092

1093
1094
1095
    return iparams;
}

1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
std::string get_model_endpoint() {
    const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
    // We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
    const char * hf_endpoint_env = getenv("HF_ENDPOINT");
    const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
    std::string model_endpoint = "https://huggingface.co/";
    if (endpoint_env) {
        model_endpoint = endpoint_env;
        if (model_endpoint.back() != '/') model_endpoint += '/';
    }
    return model_endpoint;
}

1109
1110
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
    llama_clear_adapter_lora(ctx);
1111
    for (auto & la : lora) {
1112
        if (la.scale != 0.0f) {
1113
            llama_set_adapter_lora(ctx, la.ptr, la.scale);
1114
1115
1116
1117
        }
    }
}

1118
struct llama_model_params common_model_params_to_llama(common_params & params) {
1119
1120
    auto mparams = llama_model_default_params();

1121
1122
1123
    if (!params.devices.empty()) {
        mparams.devices = params.devices.data();
    }
1124

1125
1126
1127
    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
1128

1129
1130
1131
1132
1133
1134
    mparams.main_gpu        = params.main_gpu;
    mparams.split_mode      = params.split_mode;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;
    mparams.check_tensors   = params.check_tensors;
1135
    mparams.use_extra_bufts = !params.no_extra_bufts;
1136

1137
1138
1139
1140
1141
1142
1143
    if (params.kv_overrides.empty()) {
        mparams.kv_overrides = NULL;
    } else {
        GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
        mparams.kv_overrides = params.kv_overrides.data();
    }

1144
1145
1146
1147
1148
1149
1150
    if (params.tensor_buft_overrides.empty()) {
        mparams.tensor_buft_overrides = NULL;
    } else {
        GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
        mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
    }

1151
1152
1153
    mparams.progress_callback           = params.load_progress_callback;
    mparams.progress_callback_user_data = params.load_progress_callback_user_data;

1154
1155
1156
    return mparams;
}

1157
struct llama_context_params common_context_params_to_llama(const common_params & params) {
1158
1159
1160
1161
1162
1163
1164
1165
    auto cparams = llama_context_default_params();

    cparams.n_ctx             = params.n_ctx;
    cparams.n_seq_max         = params.n_parallel;
    cparams.n_batch           = params.n_batch;
    cparams.n_ubatch          = params.n_ubatch;
    cparams.n_threads         = params.cpuparams.n_threads;
    cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ?
1166
                                params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
    cparams.embeddings        = params.embedding;
    cparams.rope_scaling_type = params.rope_scaling_type;
    cparams.rope_freq_base    = params.rope_freq_base;
    cparams.rope_freq_scale   = params.rope_freq_scale;
    cparams.yarn_ext_factor   = params.yarn_ext_factor;
    cparams.yarn_attn_factor  = params.yarn_attn_factor;
    cparams.yarn_beta_fast    = params.yarn_beta_fast;
    cparams.yarn_beta_slow    = params.yarn_beta_slow;
    cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
    cparams.pooling_type      = params.pooling_type;
    cparams.attention_type    = params.attention_type;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1178
    cparams.flash_attn_type   = params.flash_attn_type;
1179
1180
1181
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
    cparams.offload_kqv       = !params.no_kv_offload;
1182
    cparams.no_perf           = params.no_perf;
1183
    cparams.op_offload        = !params.no_op_offload;
1184
1185
    cparams.swa_full          = params.swa_full;
    cparams.kv_unified        = params.kv_unified;
1186

1187
1188
    cparams.type_k = params.cache_type_k;
    cparams.type_v = params.cache_type_v;
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

    return cparams;
}

struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
    struct ggml_threadpool_params tpp;

    ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults

    if (params.mask_valid) {
        std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
    }

    tpp.prio       = params.priority;
    tpp.poll       = params.poll;
    tpp.strict_cpu = params.strict_cpu;

    return tpp;
}

//
// Batch utils
//

1213
void common_batch_clear(struct llama_batch & batch) {
1214
1215
1216
    batch.n_tokens = 0;
}

1217
void common_batch_add(
1218
1219
1220
1221
1222
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits) {
1223
1224
    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
    batch.token   [batch.n_tokens] = id;
    batch.pos     [batch.n_tokens] = pos;
    batch.n_seq_id[batch.n_tokens] = seq_ids.size();
    for (size_t i = 0; i < seq_ids.size(); ++i) {
        batch.seq_id[batch.n_tokens][i] = seq_ids[i];
    }
    batch.logits  [batch.n_tokens] = logits;

    batch.n_tokens++;
}

1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
//
// Token utils
//

size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}

    return i;
}

size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
    // check for empty sequences
    if (a.empty() || b.empty()) {
        return 0;
    }

    // get the lengths of the input sequences
    size_t a_len = a.size();
    size_t b_len = b.size();

    // initialize the maximum length of the longest common subsequence (LCS)
    size_t max_length = 0;

    // use two rows instead of a 2D matrix to optimize space
    std::vector<size_t> prev_row(b_len + 1, 0);
    std::vector<size_t> curr_row(b_len + 1, 0);

    // iterate through the elements of a
    for (size_t i = 1; i <= a_len; i++) {
        // iterate through the elements of b
        for (size_t j = 1; j <= b_len; j++) {
            // if elements at the current positions match
            if (a[i - 1] == b[j - 1]) {
                // if it's the first element of either sequences, set LCS length to 1
                if (i == 1 || j == 1) {
                    curr_row[j] = 1;
                } else {
                    // increment LCS length by 1 compared to the previous element
                    curr_row[j] = prev_row[j - 1] + 1;
                }

                // update max_length if necessary
                if (curr_row[j] > max_length) {
                    max_length = curr_row[j];
                }
            } else {
                // reset LCS length if elements don't match
                curr_row[j] = 0;
            }
        }

        // update the previous row for the next iteration
        prev_row = curr_row;
    }

    // return the maximum length of the LCS
    return max_length;
}

1296
1297
1298
1299
//
// Vocab utils
//

1300
std::vector<llama_token> common_tokenize(
1301
1302
1303
1304
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
1305
1306
1307
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_tokenize(vocab, text, add_special, parse_special);
1308
1309
}

1310
std::vector<llama_token> common_tokenize(
1311
    const struct llama_vocab * vocab,
1312
1313
1314
1315
1316
1317
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + 2 * add_special;
    std::vector<llama_token> result(n_tokens);
1318
    n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1319
1320
1321
    if (n_tokens == std::numeric_limits<int32_t>::min()) {
        throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
    }
1322
1323
    if (n_tokens < 0) {
        result.resize(-n_tokens);
1324
        int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1325
1326
1327
1328
1329
1330
1331
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

1332
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
1333
1334
1335
1336
1337
1338
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_token_to_piece(vocab, token, special);
}

std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
1339
1340
    std::string piece;
    piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
1341
    const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1342
1343
    if (n_chars < 0) {
        piece.resize(-n_chars);
1344
        int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1345
1346
1347
1348
1349
1350
1351
1352
1353
        GGML_ASSERT(check == -n_chars);
    }
    else {
        piece.resize(n_chars);
    }

    return piece;
}

1354
1355
1356
1357
1358
1359
1360
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_detokenize(vocab, tokens, special);
}

std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
1361
1362
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
1363
    int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1364
1365
    if (n_chars < 0) {
        text.resize(-n_chars);
1366
        n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}

//
// Embedding utils
//

1380
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
1381
1382
1383
1384
1385
1386
1387
1388
    double sum = 0.0;

    switch (embd_norm) {
        case -1: // no normalisation
            sum = 1.0;
            break;
        case 0: // max absolute
            for (int i = 0; i < n; i++) {
1389
1390
1391
                if (sum < std::abs(inp[i])) {
                    sum = std::abs(inp[i]);
                }
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
            }
            sum /= 32760.0; // make an int16 range
            break;
        case 2: // euclidean
            for (int i = 0; i < n; i++) {
                sum += inp[i] * inp[i];
            }
            sum = std::sqrt(sum);
            break;
        default: // p-norm (euclidean is p-norm p=2)
            for (int i = 0; i < n; i++) {
                sum += std::pow(std::abs(inp[i]), embd_norm);
            }
            sum = std::pow(sum, 1.0 / embd_norm);
            break;
    }

    const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;

    for (int i = 0; i < n; i++) {
        out[i] = inp[i] * norm;
    }
}

1416
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
    double sum  = 0.0;
    double sum1 = 0.0;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum  += embd1[i] * embd2[i];
        sum1 += embd1[i] * embd1[i];
        sum2 += embd2[i] * embd2[i];
    }

    // Handle the case where one or both vectors are zero vectors
    if (sum1 == 0.0 || sum2 == 0.0) {
        if (sum1 == 0.0 && sum2 == 0.0) {
            return 1.0f; // two zero vectors are similar
        }
        return 0.0f;
    }

    return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

1442
1443
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
    common_control_vector_data result = { -1, {} };
1444
1445
1446
1447
1448
1449
1450
1451

    ggml_context * ctx = nullptr;
    struct gguf_init_params meta_gguf_params = {
        /* .no_alloc = */ false,
        /* .ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
    if (!ctx_gguf) {
1452
        LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
1453
1454
1455
1456
1457
        return result;
    }

    int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
    if (n_tensors == 0) {
1458
        LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
    }

    for (int i = 0; i < n_tensors; i++) {
        std::string name = gguf_get_tensor_name(ctx_gguf, i);

        int layer_idx = -1;

        // split on '.'
        size_t dotpos = name.find('.');
        if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
            try {
                layer_idx = std::stoi(name.substr(dotpos + 1));
            } catch (...) {
                layer_idx = -1;
            }
        }
        if (layer_idx < 0) {
1476
            LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1477
1478
1479
            result.n_embd = -1;
            break;
        } else if (layer_idx == 0) {
1480
            LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1481
1482
1483
1484
1485
1486
            result.n_embd = -1;
            break;
        }

        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
        if (tensor->type != GGML_TYPE_F32) {
1487
            LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
1488
1489
1490
1491
            result.n_embd = -1;
            break;
        }
        if (ggml_n_dims(tensor) != 1) {
1492
            LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
1493
1494
1495
1496
1497
1498
1499
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result.n_embd = ggml_nelements(tensor);
        } else if (ggml_nelements(tensor) != result.n_embd) {
1500
            LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
            result.n_embd = -1;
            break;
        }

        // extend if necessary - do not store data for layer 0 (it's not used)
        result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);

        const float * src = (const float *) tensor->data;
        float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
        for (int j = 0; j < result.n_embd; j++) {
            dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
        }

    }

    if (result.n_embd == -1) {
1517
        LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
1518
1519
1520
1521
1522
1523
1524
1525
1526
        result.data.clear();
    }

    gguf_free(ctx_gguf);
    ggml_free(ctx);

    return result;
}

1527
1528
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
    common_control_vector_data result = { -1, {} };
1529
1530

    for (const auto & info : load_infos) {
1531
        auto cur = common_control_vector_load_one(info);
1532
1533
1534
1535
1536
1537

        if (cur.n_embd == -1) {
            result.n_embd = -1;
            break;
        }
        if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
1538
            LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result = std::move(cur);
        } else {
            result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f);  // extend if necessary
            for (size_t i = 0; i < cur.data.size(); i++) {
                result.data[i] += cur.data[i];
            }
        }
    }

    if (result.n_embd == -1) {
1554
        LOG_ERR("%s: no valid control vector files passed\n", __func__);
1555
1556
1557
1558
1559
        result.data.clear();
    }

    return result;
}
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride) {
    const int64_t ne_datapoint = llama_n_ctx(ctx);
    const int64_t ndata        = (tokens.size() - ne_datapoint - 1) / stride;
    ggml_opt_dataset_t result = ggml_opt_dataset_init(
        GGML_TYPE_I32, GGML_TYPE_I32, ne_datapoint, ne_datapoint, ndata, /*ndata_shard =*/ 1);

    llama_token * data   = (llama_token *) ggml_opt_dataset_data(result)->data;
    llama_token * labels = (llama_token *) ggml_opt_dataset_labels(result)->data;

    for (int64_t idata = 0; idata < ndata; ++idata) {
        memcpy(data   + idata*ne_datapoint, tokens.data() + idata*stride + 0, ne_datapoint*sizeof(llama_token));
        memcpy(labels + idata*ne_datapoint, tokens.data() + idata*stride + 1, ne_datapoint*sizeof(llama_token));
    }

    return result;
}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
    ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
    const lr_opt &            d      = *(lr_opt *) userdata;
    result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
    result.sgd.wd = result.adamw.wd = d.wd;
    return result;
}

// TODO make all command line args case-insensitive
static inline bool eq_case_insensitive(char const* a, char const* b) {
    return !
#if defined(_MSC_VER)
        _stricmp
#else
        strcasecmp
#endif // defined(_MSC_VER)
        (a, b);
}

enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
    if (eq_case_insensitive("adamw", n)) {
        return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
    }
    if (eq_case_insensitive("sgd", n)) {
        return GGML_OPT_OPTIMIZER_TYPE_SGD;
    }
    return GGML_OPT_OPTIMIZER_TYPE_COUNT;
}

// TODO simplify to use just log and exp
static float const k_log_2 = std::log(2.f);

void lr_opt::init() {
    if (lr_min > 0 && lr_min < lr0) {
        float nhalf = std::log(lr0 / lr_min) / k_log_2;
        float e     = epochs;
        if (decay_epochs > 0 && decay_epochs < e) {
            e = decay_epochs;
        } else {
            decay_epochs = e;
        }
        scale_epoch = nhalf / e;
    }
}

float lr_opt::get_lr(float epoch) const {
    float r = lr_min <= 0 ? lr0 :
        epoch >= decay_epochs ? lr_min :
        lr0 * std::pow(0.5f, epoch * scale_epoch);
    LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
    return r;
}