common.cpp 68.6 KB
Newer Older
1
2
3
4
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif

5
6
7
#include "ggml.h"
#include "gguf.h"

8
#include "common.h"
9
#include "log.h"
10
11
12
13
14
15
16
17
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"

#include <algorithm>
#include <cinttypes>
18
#include <climits>
19
20
21
22
23
#include <cmath>
#include <codecvt>
#include <cstdarg>
#include <cstring>
#include <ctime>
24
#include <filesystem>
25
26
27
28
29
30
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <string>
31
#include <thread>
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <unordered_map>
#include <unordered_set>
#include <vector>

#if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h>
#include <sys/sysctl.h>
#endif

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <locale>
#include <windows.h>
#include <fcntl.h>
#include <io.h>
#else
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
69
70
71
#   if !defined(PATH_MAX)
#   define PATH_MAX MAX_PATH
#   endif
72
73
74
75
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

//
// CURL utils
//

using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;

// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
    struct curl_slist * ptr = nullptr;
    ~curl_slist_ptr() {
        if (ptr) {
            curl_slist_free_all(ptr);
        }
    }
};
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#endif // LLAMA_USE_CURL

using json = nlohmann::ordered_json;

//
// CPU utils
//

int32_t cpu_get_num_physical_cores() {
#ifdef __linux__
    // enumerate the set of thread siblings, num entries is num cores
    std::unordered_set<std::string> siblings;
    for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
        std::ifstream thread_siblings("/sys/devices/system/cpu/cpu"
            + std::to_string(cpu) + "/topology/thread_siblings");
        if (!thread_siblings.is_open()) {
            break; // no more cpus
        }
        std::string line;
        if (std::getline(thread_siblings, line)) {
            siblings.insert(line);
        }
    }
    if (!siblings.empty()) {
        return static_cast<int32_t>(siblings.size());
    }
#elif defined(__APPLE__) && defined(__MACH__)
    int32_t num_physical_cores;
    size_t len = sizeof(num_physical_cores);
    int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
    result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
    if (result == 0) {
        return num_physical_cores;
    }
#elif defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    unsigned int n_threads_win = std::thread::hardware_concurrency();
    unsigned int default_threads = n_threads_win > 0 ? (n_threads_win <= 4 ? n_threads_win : n_threads_win / 2) : 4;

    DWORD buffer_size = 0;
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, nullptr, &buffer_size)) {
        if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
            return default_threads;
        }
    }

    std::vector<char> buffer(buffer_size);
    if (!GetLogicalProcessorInformationEx(RelationProcessorCore, reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data()), &buffer_size)) {
        return default_threads;
    }

    int32_t num_physical_cores = 0;
    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(buffer.data());
    while (buffer_size > 0) {
        if (info->Relationship == RelationProcessorCore) {
            num_physical_cores += info->Processor.GroupCount;
        }
        buffer_size -= info->Size;
        info = reinterpret_cast<PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX>(reinterpret_cast<char*>(info) + info->Size);
    }

    return num_physical_cores > 0 ? num_physical_cores : default_threads;
#endif
    unsigned int n_threads = std::thread::hardware_concurrency();
    return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}

#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
#include <pthread.h>

static void cpuid(unsigned leaf, unsigned subleaf,
                  unsigned *eax, unsigned *ebx, unsigned *ecx, unsigned *edx) {
    __asm__("movq\t%%rbx,%%rsi\n\t"
            "cpuid\n\t"
            "xchgq\t%%rbx,%%rsi"
            : "=a"(*eax), "=S"(*ebx), "=c"(*ecx), "=d"(*edx)
            : "0"(leaf), "2"(subleaf));
}

static int pin_cpu(int cpu) {
    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(cpu, &mask);
    return pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask);
}

static bool is_hybrid_cpu(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(7, 0, &eax, &ebx, &ecx, &edx);
    return !!(edx & (1u << 15));
}

static bool is_running_on_efficiency_core(void) {
    unsigned eax, ebx, ecx, edx;
    cpuid(0x1a, 0, &eax, &ebx, &ecx, &edx);
    int intel_atom = 0x20;
    int core_type = (eax & 0xff000000u) >> 24;
    return core_type == intel_atom;
}

static int cpu_count_math_cpus(int n_cpu) {
    int result = 0;
    for (int cpu = 0; cpu < n_cpu; ++cpu) {
        if (pin_cpu(cpu)) {
199
            return -1;
200
        }
201
202
        if (is_running_on_efficiency_core()) {
            continue; // efficiency cores harm lockstep threading
203
        }
204
205
        ++cpu; // hyperthreading isn't useful for linear algebra
        ++result;
206
    }
207
208
209
210
211
212
213
214
215
216
217
218
219
    return result;
}

#endif // __x86_64__ && __linux__

/**
 * Returns number of CPUs on system that are useful for math.
 */
int32_t cpu_get_num_math() {
#if defined(__x86_64__) && defined(__linux__) && !defined(__ANDROID__)
    int n_cpu = sysconf(_SC_NPROCESSORS_ONLN);
    if (n_cpu < 1) {
        return cpu_get_num_physical_cores();
220
    }
221
222
223
224
225
226
227
228
    if (is_hybrid_cpu()) {
        cpu_set_t affinity;
        if (!pthread_getaffinity_np(pthread_self(), sizeof(affinity), &affinity)) {
            int result = cpu_count_math_cpus(n_cpu);
            pthread_setaffinity_np(pthread_self(), sizeof(affinity), &affinity);
            if (result > 0) {
                return result;
            }
229
230
        }
    }
231
232
233
234
235
236
237
238
239
240
#endif
    return cpu_get_num_physical_cores();
}

// Helper for setting process priority

#if defined(_WIN32)

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
241
242
        return true;
    }
243
244
245
246
247
248
249

    DWORD p = NORMAL_PRIORITY_CLASS;
    switch (prio) {
        case GGML_SCHED_PRIO_NORMAL:   p = NORMAL_PRIORITY_CLASS;       break;
        case GGML_SCHED_PRIO_MEDIUM:   p = ABOVE_NORMAL_PRIORITY_CLASS; break;
        case GGML_SCHED_PRIO_HIGH:     p = HIGH_PRIORITY_CLASS;         break;
        case GGML_SCHED_PRIO_REALTIME: p = REALTIME_PRIORITY_CLASS;     break;
250
    }
251
252
253
254

    if (!SetPriorityClass(GetCurrentProcess(), p)) {
        LOG_WRN("failed to set process priority class %d : (%d)\n", prio, (int) GetLastError());
        return false;
255
    }
256
257
258
259
260
261
262
263
264
265

    return true;
}

#else // MacOS and POSIX
#include <sys/types.h>
#include <sys/resource.h>

bool set_process_priority(enum ggml_sched_priority prio) {
    if (prio == GGML_SCHED_PRIO_NORMAL) {
266
267
        return true;
    }
268
269
270
271
272
273
274

    int p = 0;
    switch (prio) {
        case GGML_SCHED_PRIO_NORMAL:   p =  0;  break;
        case GGML_SCHED_PRIO_MEDIUM:   p = -5;  break;
        case GGML_SCHED_PRIO_HIGH:     p = -10; break;
        case GGML_SCHED_PRIO_REALTIME: p = -20; break;
275
    }
276
277
278
279

    if (!setpriority(PRIO_PROCESS, 0, p)) {
        LOG_WRN("failed to set process priority %d : %s (%d)\n", prio, strerror(errno), errno);
        return false;
280
    }
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    return true;
}

#endif

//
// CLI argument parsing
//


void postprocess_cpu_params(cpu_params& cpuparams, const cpu_params* role_model) {
    int32_t n_set = 0;

    if (cpuparams.n_threads < 0) {
        // Assuming everything about cpuparams is invalid
        if (role_model != nullptr) {
            cpuparams = *role_model;
        } else {
            cpuparams.n_threads = cpu_get_num_math();
        }
301
    }
302
303
304
305
306

    for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
        if (cpuparams.cpumask[i]) {
            n_set++;
        }
307
    }
308
309
310
311

    if (n_set && n_set < cpuparams.n_threads) {
        // Not enough set bits, may experience performance issues.
        LOG_WRN("Not enough set bits in CPU mask (%d) to satisfy requested thread count: %d\n", n_set, cpuparams.n_threads);
312
    }
313
314
315
316
317
318
319
}

bool parse_cpu_range(const std::string & range, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    size_t dash_loc = range.find('-');
    if (dash_loc == std::string::npos) {
        LOG_ERR("Format of CPU range is invalid! Expected [<start>]-[<end>].\n");
        return false;
320
    }
321
322
323
324
325
326
327
328
329
330
331
332

    size_t start_i;
    size_t end_i;

    if (dash_loc == 0) {
        start_i = 0;
    } else {
        start_i = std::stoull(range.substr(0, dash_loc));
        if (start_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("Start index out of bounds!\n");
            return false;
        }
333
    }
334
335
336
337
338
339
340
341

    if (dash_loc == range.length() - 1) {
        end_i = GGML_MAX_N_THREADS - 1;
    } else {
        end_i = std::stoull(range.substr(dash_loc + 1));
        if (end_i >= GGML_MAX_N_THREADS) {
            LOG_ERR("End index out of bounds!\n");
            return false;
342
343
344
        }
    }

345
346
347
348
349
    for (size_t i = start_i; i <= end_i; i++) {
        boolmask[i] = true;
    }

    return true;
350
351
}

352
353
354
355
356
357
bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREADS]) {
    // Discard potential 0x prefix
    size_t start_i = 0;
    if (mask.length() >= 2 && mask.substr(0, 2) == "0x") {
        start_i = 2;
    }
358

359
360
    size_t num_digits = mask.length() - start_i;
    if (num_digits > 128) num_digits = 128;
361

362
    size_t end_i = num_digits + start_i;
363

364
365
366
367
368
369
370
371
372
373
374
375
376
    for (size_t i = start_i, n = (num_digits*4 - 1); i < end_i; i++, n-=4) {
        char c = mask.at(i);
        int8_t id = c;

        if ((c >= '0' && c <= '9')) {
            id -= '0';
        } else if (c >= 'a' && c <= 'f') {
            id -= 'a' - 10;
        } else if (c >= 'A' && c <= 'F') {
            id -= 'A' - 10;
        } else {
            LOG_ERR("Invalid hex character '%c' at position %d\n", c, int32_t(i));
            return false;
377
378
        }

379
380
381
382
383
384
385
386
387
        boolmask[  n  ] = boolmask[  n  ] || ((id & 8) != 0);
        boolmask[n - 1] = boolmask[n - 1] || ((id & 4) != 0);
        boolmask[n - 2] = boolmask[n - 2] || ((id & 2) != 0);
        boolmask[n - 3] = boolmask[n - 3] || ((id & 1) != 0);
    }

    return true;
}

388
void common_init() {
389
    llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
390
391
        if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
            common_log_add(common_log_main(), level, "%s", text);
392
393
        }
    }, NULL);
394

395
396
397
398
399
#ifdef NDEBUG
    const char * build_type = "";
#else
    const char * build_type = " (debug)";
#endif
400

401
    LOG_INF("build: %d (%s) with %s for %s%s\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT, LLAMA_COMPILER, LLAMA_BUILD_TARGET, build_type);
402
403
}

404
std::string common_params_get_system_info(const common_params & params) {
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    std::ostringstream os;

    os << "system_info: n_threads = " << params.cpuparams.n_threads;
    if (params.cpuparams_batch.n_threads != -1) {
        os << " (n_threads_batch = " << params.cpuparams_batch.n_threads << ")";
    }
#if defined(_WIN32) && (_WIN32_WINNT >= 0x0601) && !defined(__MINGW64__) // windows 7 and later
    // TODO: windows + arm64 + mingw64
    DWORD logicalProcessorCount = GetActiveProcessorCount(ALL_PROCESSOR_GROUPS);
    os << " / " << logicalProcessorCount << " | " << llama_print_system_info();
#else
    os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
#endif

    return os.str();
}

//
// String utils
//

426
427
428
429
430
431
432
433
434
435
436
437
438
std::string string_format(const char * fmt, ...) {
    va_list ap;
    va_list ap2;
    va_start(ap, fmt);
    va_copy(ap2, ap);
    int size = vsnprintf(NULL, 0, fmt, ap);
    GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
    std::vector<char> buf(size + 1);
    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
    GGML_ASSERT(size2 == size);
    va_end(ap2);
    va_end(ap);
    return std::string(buf.data(), size);
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
}

std::string string_strip(const std::string & str) {
    size_t start = 0;
    size_t end = str.size();
    while (start < end && std::isspace(str[start])) {
        start++;
    }
    while (end > start && std::isspace(str[end - 1])) {
        end--;
    }
    return str.substr(start, end - start);
}

std::string string_get_sortable_timestamp() {
    using clock = std::chrono::system_clock;

    const clock::time_point current_time = clock::now();
    const time_t as_time_t = clock::to_time_t(current_time);
    char timestamp_no_ns[100];
    std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));

    const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
        current_time.time_since_epoch() % 1000000000).count();
    char timestamp_ns[11];
    snprintf(timestamp_ns, 11, "%09" PRId64, ns);

    return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
}

void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
    if (search.empty()) {
        return;
    }
    std::string builder;
    builder.reserve(s.length());
    size_t pos = 0;
    size_t last_pos = 0;
    while ((pos = s.find(search, last_pos)) != std::string::npos) {
        builder.append(s, last_pos, pos - last_pos);
        builder.append(replace);
        last_pos = pos + search.length();
    }
    builder.append(s, last_pos, std::string::npos);
    s = std::move(builder);
}

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
    std::ostringstream result;
    for (size_t i = 0; i < values.size(); ++i) {
        if (i > 0) {
            result << separator;
        }
        result << values[i];
    }
    return result.str();
}

std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
    std::vector<std::string> parts;
    size_t start = 0;
    size_t end = str.find(delimiter);

    while (end != std::string::npos) {
        parts.push_back(str.substr(start, end - start));
        start = end + delimiter.length();
        end = str.find(delimiter, start);
    }

    parts.push_back(str.substr(start));

    return parts;
}

std::string string_repeat(const std::string & str, size_t n) {
    if (n == 0) {
        return "";
    }

    std::string result;
    result.reserve(str.length() * n);

    for (size_t i = 0; i < n; ++i) {
        result += str;
    }

    return result;
}

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
std::string string_from(bool value) {
    return value ? "true" : "false";
}

std::string string_from(const std::vector<int> & values) {
    std::stringstream buf;

    buf << "[ ";
    bool first = true;
    for (auto e : values) {
        if (first) {
            first = false;
        } else {
            buf << ", ";
        }
        buf << std::to_string(e);
    }
    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (const auto & token : tokens) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

563
        auto detokenized = common_token_to_piece(ctx, token);
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

        detokenized.erase(
            std::remove_if(
                detokenized.begin(),
                detokenized.end(),
                [](const unsigned char c) { return !std::isprint(c); }),
            detokenized.end());

        buf << "'" << detokenized << "'"
            << ":" << std::to_string(token);
    }

    buf << " ]";

    return buf.str();
}

std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch) {
    std::stringstream buf;

    buf << "[ ";

    bool first = true;
    for (int i = 0; i < batch.n_tokens; ++i) {
        if (!first) {
            buf << ", ";
        } else {
            first = false;
        }

594
        auto detokenized = common_token_to_piece(ctx, batch.token[i]);
595
596
597
598
599
600
601
602

        detokenized.erase(
                std::remove_if(
                    detokenized.begin(),
                    detokenized.end(),
                    [](const unsigned char c) { return !std::isprint(c); }),
                detokenized.end());

603
604
605
606
607
608
        buf << "\n"          << std::to_string(i)
            << ", token '"   << detokenized << "'"
            << ", pos "      << std::to_string(batch.pos[i])
            << ", n_seq_id " << std::to_string(batch.n_seq_id[i])
            << ", seq_id "   << std::to_string(batch.seq_id[i][0])
            << ", logits "   << std::to_string(batch.logits[i]);
609
610
611
612
613
614
615
    }

    buf << " ]";

    return buf.str();
}

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
void string_process_escapes(std::string & input) {
    std::size_t input_len = input.length();
    std::size_t output_idx = 0;

    for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
        if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
            switch (input[++input_idx]) {
                case 'n':  input[output_idx++] = '\n'; break;
                case 'r':  input[output_idx++] = '\r'; break;
                case 't':  input[output_idx++] = '\t'; break;
                case '\'': input[output_idx++] = '\''; break;
                case '\"': input[output_idx++] = '\"'; break;
                case '\\': input[output_idx++] = '\\'; break;
                case 'x':
                    // Handle \x12, etc
                    if (input_idx + 2 < input_len) {
                        const char x[3] = { input[input_idx + 1], input[input_idx + 2], 0 };
                        char *err_p = nullptr;
                        const long val = std::strtol(x, &err_p, 16);
                        if (err_p == x + 2) {
                            input_idx += 2;
                            input[output_idx++] = char(val);
                            break;
                        }
                    }
                    // fall through
                default:   input[output_idx++] = '\\';
                           input[output_idx++] = input[input_idx]; break;
            }
        } else {
            input[output_idx++] = input[input_idx];
        }
    }

    input.resize(output_idx);
}

bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides) {
    const char * sep = strchr(data, '=');
    if (sep == nullptr || sep - data >= 128) {
656
        LOG_ERR("%s: malformed KV override '%s'\n", __func__, data);
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
        return false;
    }
    llama_model_kv_override kvo;
    std::strncpy(kvo.key, data, sep - data);
    kvo.key[sep - data] = 0;
    sep++;
    if (strncmp(sep, "int:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
        kvo.val_i64 = std::atol(sep);
    } else if (strncmp(sep, "float:", 6) == 0) {
        sep += 6;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
        kvo.val_f64 = std::atof(sep);
    } else if (strncmp(sep, "bool:", 5) == 0) {
        sep += 5;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
        if (std::strcmp(sep, "true") == 0) {
            kvo.val_bool = true;
        } else if (std::strcmp(sep, "false") == 0) {
            kvo.val_bool = false;
        } else {
679
            LOG_ERR("%s: invalid boolean value for KV override '%s'\n", __func__, data);
680
681
682
683
684
685
            return false;
        }
    } else if (strncmp(sep, "str:", 4) == 0) {
        sep += 4;
        kvo.tag = LLAMA_KV_OVERRIDE_TYPE_STR;
        if (strlen(sep) > 127) {
686
            LOG_ERR("%s: malformed KV override '%s', value cannot exceed 127 chars\n", __func__, data);
687
688
689
690
691
            return false;
        }
        strncpy(kvo.val_str, sep, 127);
        kvo.val_str[127] = '\0';
    } else {
692
        LOG_ERR("%s: invalid type for KV override '%s'\n", __func__, data);
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        return false;
    }
    overrides.emplace_back(std::move(kvo));
    return true;
}

//
// Filesystem utils
//

// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
    if (!filename.length()) {
        // Empty filename invalid
        return false;
    }
    if (filename.length() > 255) {
        // Limit at common largest possible filename on Linux filesystems
        // to avoid unnecessary further validation
        // (On systems with smaller limits it will be caught by the OS)
        return false;
    }

    std::u32string filename_utf32;
    try {
719
720
721
722
723
#if defined(__clang__)
        // disable C++17 deprecation warning for std::codecvt_utf8
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
#endif
724
        std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
725
726
727
728
729

#if defined(__clang__)
#    pragma clang diagnostic pop
#endif

730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
        filename_utf32 = converter.from_bytes(filename);

        // If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
        // or invalid encodings were encountered. Reject such attempts
        std::string filename_reencoded = converter.to_bytes(filename_utf32);
        if (filename_reencoded != filename) {
            return false;
        }
    } catch (const std::exception &) {
        return false;
    }

    // Check for forbidden codepoints:
    // - Control characters
    // - Unicode equivalents of illegal characters
    // - UTF-16 surrogate pairs
    // - UTF-8 replacement character
    // - Byte order mark (BOM)
    // - Illegal characters: / \ : * ? " < > |
    for (char32_t c : filename_utf32) {
        if (c <= 0x1F // Control characters (C0)
            || c == 0x7F // Control characters (DEL)
            || (c >= 0x80 && c <= 0x9F) // Control characters (C1)
            || c == 0xFF0E // Fullwidth Full Stop (period equivalent)
            || c == 0x2215 // Division Slash (forward slash equivalent)
            || c == 0x2216 // Set Minus (backslash equivalent)
            || (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
            || c == 0xFFFD // Replacement Character (UTF-8)
            || c == 0xFEFF // Byte Order Mark (BOM)
            || c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
            || c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
            return false;
        }
    }

    // Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
    // Unicode and other whitespace is not affected, only 0x20 space
    if (filename.front() == ' ' || filename.back() == ' ' || filename.back() == '.') {
        return false;
    }

    // Reject any ".." (currently stricter than necessary, it should be fine to just check for == ".." instead)
    if (filename.find("..") != std::string::npos) {
        return false;
    }

    // Reject "."
    if (filename == ".") {
        return false;
    }

    return true;
}

// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
    std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
    std::wstring wpath = converter.from_bytes(path);

    // if the path already exists, check whether it's a directory
    const DWORD attributes = GetFileAttributesW(wpath.c_str());
    if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
        return true;
    }

    size_t pos_slash = 0;

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
        const std::wstring subpath = wpath.substr(0, pos_slash);
        const wchar_t * test = subpath.c_str();

        const bool success = CreateDirectoryW(test, NULL);
        if (!success) {
            const DWORD error = GetLastError();

            // if the path already exists, ensure that it's a directory
            if (error == ERROR_ALREADY_EXISTS) {
                const DWORD attributes = GetFileAttributesW(subpath.c_str());
                if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
                    return false;
                }
            } else {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#else
    // if the path already exists, check whether it's a directory
    struct stat info;
    if (stat(path.c_str(), &info) == 0) {
        return S_ISDIR(info.st_mode);
    }

    size_t pos_slash = 1; // skip leading slashes for directory creation

    // process path from front to back, procedurally creating directories
    while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
        const std::string subpath = path.substr(0, pos_slash);
        struct stat info;

        // if the path already exists, ensure that it's a directory
        if (stat(subpath.c_str(), &info) == 0) {
            if (!S_ISDIR(info.st_mode)) {
                return false;
            }
        } else {
            // create parent directories
            const int ret = mkdir(subpath.c_str(), 0755);
            if (ret != 0) {
                return false;
            }
        }

        pos_slash += 1;
    }

    return true;
#endif // _WIN32
}

std::string fs_get_cache_directory() {
    std::string cache_directory = "";
    auto ensure_trailing_slash = [](std::string p) {
        // Make sure to add trailing slash
        if (p.back() != DIRECTORY_SEPARATOR) {
            p += DIRECTORY_SEPARATOR;
        }
        return p;
    };
    if (getenv("LLAMA_CACHE")) {
        cache_directory = std::getenv("LLAMA_CACHE");
    } else {
#ifdef __linux__
        if (std::getenv("XDG_CACHE_HOME")) {
            cache_directory = std::getenv("XDG_CACHE_HOME");
        } else {
            cache_directory = std::getenv("HOME") + std::string("/.cache/");
        }
#elif defined(__APPLE__)
        cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
        cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
        cache_directory = ensure_trailing_slash(cache_directory);
        cache_directory += "llama.cpp";
    }
    return ensure_trailing_slash(cache_directory);
}

std::string fs_get_cache_file(const std::string & filename) {
    GGML_ASSERT(filename.find(DIRECTORY_SEPARATOR) == std::string::npos);
    std::string cache_directory = fs_get_cache_directory();
    const bool success = fs_create_directory_with_parents(cache_directory);
    if (!success) {
        throw std::runtime_error("failed to create cache directory: " + cache_directory);
    }
    return cache_directory + filename;
}


//
// Model utils
//
899
900
901
struct common_init_result common_init_from_params(common_params & params) {
    common_init_result iparams;
    auto mparams = common_model_params_to_llama(params);
902
903
904
905

    llama_model * model = nullptr;

    if (!params.hf_repo.empty() && !params.hf_file.empty()) {
906
        model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
907
    } else if (!params.model_url.empty()) {
908
        model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
909
    } else {
910
        model = llama_model_load_from_file(params.model.c_str(), mparams);
911
912
913
    }

    if (model == NULL) {
914
        LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
915
916
917
        return iparams;
    }

918
919
    const llama_vocab * vocab = llama_model_get_vocab(model);

920
921
922
    if (params.reranking) {
        bool ok = true;

923
924
        if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have a  BOS token, reranking will not work\n", __func__);
925
926
927
            ok = false;
        }

928
929
        if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
930
931
932
            ok = false;
        }

933
934
        if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
            LOG_WRN("%s: warning: vocab does not have a  SEP token, reranking will not work\n", __func__);
935
936
937
938
            ok = false;
        }

        if (!ok) {
939
            llama_model_free(model);
940
941
942
943
944
945

            return iparams;
        }
    }

    auto cparams = common_context_params_to_llama(params);
946

947
    llama_context * lctx = llama_init_from_model(model, cparams);
948
    if (lctx == NULL) {
949
        LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
950
        llama_model_free(model);
951
952
953
        return iparams;
    }

954
    if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
955
956
        LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
        params.ctx_shift = false;
957
958
    }

959
960
    if (!params.control_vectors.empty()) {
        if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
961
        if (params.control_vector_layer_end   <= 0) params.control_vector_layer_end   = llama_model_n_layer(model);
962

963
        const auto cvec = common_control_vector_load(params.control_vectors);
964
965
        if (cvec.n_embd == -1) {
            llama_free(lctx);
966
            llama_model_free(model);
967

968
969
970
            return iparams;
        }

971
972
973
974
975
976
977
        int err = llama_apply_adapter_cvec(
                lctx,
                cvec.data.data(),
                cvec.data.size(),
                cvec.n_embd,
                params.control_vector_layer_start,
                params.control_vector_layer_end);
978
979
        if (err) {
            llama_free(lctx);
980
            llama_model_free(model);
981

982
983
984
985
986
987
            return iparams;
        }
    }

    // load and optionally apply lora adapters
    for (auto & la : params.lora_adapters) {
988
989
        llama_adapter_lora_ptr lora;
        lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
990
        if (lora == nullptr) {
991
            LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
992
            llama_free(lctx);
993
            llama_model_free(model);
994
995
            return iparams;
        }
996
997
998

        la.ptr = lora.get();
        iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
999
    }
1000

1001
    if (!params.lora_init_without_apply) {
1002
        common_set_adapter_lora(lctx, params.lora_adapters);
1003
1004
    }

1005
1006
    if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
        LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
1007
        params.sampling.ignore_eos = false;
1008
1009
    }

1010
    if (params.sampling.ignore_eos) {
1011
1012
        for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
            if (llama_vocab_is_eog(vocab, i)) {
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
                LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
                params.sampling.logit_bias.push_back({i, -INFINITY});
            }
        }
    }

    if (params.sampling.penalty_last_n == -1) {
        LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.penalty_last_n = llama_n_ctx(lctx);
    }

    if (params.sampling.dry_penalty_last_n == -1) {
        LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
        params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
    }

1029
    if (params.warmup) {
1030
        LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
1031
1032

        std::vector<llama_token> tmp;
1033
1034
1035
        llama_token bos = llama_vocab_bos(vocab);
        llama_token eos = llama_vocab_eos(vocab);

1036
        // some models (e.g. T5) don't have a BOS token
1037
        if (bos != LLAMA_TOKEN_NULL) {
1038
1039
            tmp.push_back(bos);
        }
1040
1041
1042
1043
1044
1045
        if (eos != LLAMA_TOKEN_NULL) {
            tmp.push_back(eos);
        }
        if (tmp.empty()) {
            tmp.push_back(0);
        }
1046
1047

        if (llama_model_has_encoder(model)) {
1048
            llama_encode(lctx, llama_batch_get_one(tmp.data(), tmp.size()));
1049
            llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
1050
            if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
1051
1052
1053
1054
1055
1056
                decoder_start_token_id = bos;
            }
            tmp.clear();
            tmp.push_back(decoder_start_token_id);
        }
        if (llama_model_has_decoder(model)) {
1057
            llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
1058
1059
1060
        }
        llama_kv_cache_clear(lctx);
        llama_synchronize(lctx);
1061
        llama_perf_context_reset(lctx);
1062
1063
    }

1064
1065
    iparams.model.reset(model);
    iparams.context.reset(lctx);
1066

1067
1068
1069
    return iparams;
}

1070
1071
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
    llama_clear_adapter_lora(ctx);
1072
    for (auto & la : lora) {
1073
        if (la.scale != 0.0f) {
1074
            llama_set_adapter_lora(ctx, la.ptr, la.scale);
1075
1076
1077
1078
        }
    }
}

1079
struct llama_model_params common_model_params_to_llama(common_params & params) {
1080
1081
    auto mparams = llama_model_default_params();

1082
1083
1084
    if (!params.devices.empty()) {
        mparams.devices = params.devices.data();
    }
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
    if (params.n_gpu_layers != -1) {
        mparams.n_gpu_layers = params.n_gpu_layers;
    }
    mparams.main_gpu        = params.main_gpu;
    mparams.split_mode      = params.split_mode;
    mparams.tensor_split    = params.tensor_split;
    mparams.use_mmap        = params.use_mmap;
    mparams.use_mlock       = params.use_mlock;
    mparams.check_tensors   = params.check_tensors;
    if (params.kv_overrides.empty()) {
        mparams.kv_overrides = NULL;
    } else {
        GGML_ASSERT(params.kv_overrides.back().key[0] == 0 && "KV overrides not terminated with empty key");
        mparams.kv_overrides = params.kv_overrides.data();
    }

    return mparams;
}

1104
struct llama_context_params common_context_params_to_llama(const common_params & params) {
1105
1106
1107
1108
1109
1110
1111
1112
    auto cparams = llama_context_default_params();

    cparams.n_ctx             = params.n_ctx;
    cparams.n_seq_max         = params.n_parallel;
    cparams.n_batch           = params.n_batch;
    cparams.n_ubatch          = params.n_ubatch;
    cparams.n_threads         = params.cpuparams.n_threads;
    cparams.n_threads_batch   = params.cpuparams_batch.n_threads == -1 ?
1113
                                params.cpuparams.n_threads : params.cpuparams_batch.n_threads;
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
    cparams.logits_all        = params.logits_all;
    cparams.embeddings        = params.embedding;
    cparams.rope_scaling_type = params.rope_scaling_type;
    cparams.rope_freq_base    = params.rope_freq_base;
    cparams.rope_freq_scale   = params.rope_freq_scale;
    cparams.yarn_ext_factor   = params.yarn_ext_factor;
    cparams.yarn_attn_factor  = params.yarn_attn_factor;
    cparams.yarn_beta_fast    = params.yarn_beta_fast;
    cparams.yarn_beta_slow    = params.yarn_beta_slow;
    cparams.yarn_orig_ctx     = params.yarn_orig_ctx;
    cparams.pooling_type      = params.pooling_type;
    cparams.attention_type    = params.attention_type;
    cparams.defrag_thold      = params.defrag_thold;
    cparams.cb_eval           = params.cb_eval;
    cparams.cb_eval_user_data = params.cb_eval_user_data;
    cparams.offload_kqv       = !params.no_kv_offload;
    cparams.flash_attn        = params.flash_attn;
1131
1132
1133
1134
1135
1136
    cparams.no_perf           = params.no_perf;

    if (params.reranking) {
        cparams.embeddings    = true;
        cparams.pooling_type  = LLAMA_POOLING_TYPE_RANK;
    }
1137

1138
1139
    cparams.type_k = params.cache_type_k;
    cparams.type_v = params.cache_type_v;
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161

    return cparams;
}

struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params) {
    struct ggml_threadpool_params tpp;

    ggml_threadpool_params_init(&tpp, params.n_threads); // setup the defaults

    if (params.mask_valid) {
        std::memcpy(&tpp.cpumask, &params.cpumask, GGML_MAX_N_THREADS);
    }

    tpp.prio       = params.priority;
    tpp.poll       = params.poll;
    tpp.strict_cpu = params.strict_cpu;

    return tpp;
}

#ifdef LLAMA_USE_CURL

1162
1163
1164
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2

1165
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
    int remaining_attempts = max_attempts;

    while (remaining_attempts > 0) {
        LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);

        CURLcode res = curl_easy_perform(curl);
        if (res == CURLE_OK) {
            return true;
        }

        int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
        LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);

        remaining_attempts--;
        std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
    }

    LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);

    return false;
}

1188
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
1189
    // Initialize libcurl
1190
1191
    curl_ptr       curl(curl_easy_init(), &curl_easy_cleanup);
    curl_slist_ptr http_headers;
1192
    if (!curl) {
1193
        LOG_ERR("%s: error initializing libcurl\n", __func__);
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
        return false;
    }

    bool force_download = false;

    // Set the URL, allow to follow http redirection
    curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
    curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);

    // Check if hf-token or bearer-token was specified
    if (!hf_token.empty()) {
1205
1206
1207
        std::string auth_header = "Authorization: Bearer " + hf_token;
        http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
        curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
1208
1209
1210
1211
1212
1213
1214
1215
1216
    }

#if defined(_WIN32)
    // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
    //   operating system. Currently implemented under MS-Windows.
    curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif

    // Check if the file already exists locally
1217
    auto file_exists = std::filesystem::exists(path);
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

    // If the file exists, check its JSON metadata companion file.
    std::string metadata_path = path + ".json";
    nlohmann::json metadata;
    std::string etag;
    std::string last_modified;

    if (file_exists) {
        // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
        std::ifstream metadata_in(metadata_path);
        if (metadata_in.good()) {
            try {
                metadata_in >> metadata;
1231
                LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
1232
1233
1234
                if (metadata.contains("url") && metadata.at("url").is_string()) {
                    auto previous_url = metadata.at("url").get<std::string>();
                    if (previous_url != url) {
1235
                        LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
                        return false;
                    }
                }
                if (metadata.contains("etag") && metadata.at("etag").is_string()) {
                    etag = metadata.at("etag");
                }
                if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
                    last_modified = metadata.at("lastModified");
                }
            } catch (const nlohmann::json::exception & e) {
1246
            LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
1247
1248
1249
1250
                return false;
            }
        }
    } else {
1251
        LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
1252
1253
1254
    }

    // Send a HEAD request to retrieve the etag and last-modified headers
1255
    struct common_load_model_from_url_headers {
1256
1257
1258
        std::string etag;
        std::string last_modified;
    };
1259

1260
    common_load_model_from_url_headers headers;
1261

1262
1263
1264
    {
        typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
        auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
1265
            common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

            static std::regex header_regex("([^:]+): (.*)\r\n");
            static std::regex etag_regex("ETag", std::regex_constants::icase);
            static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);

            std::string header(buffer, n_items);
            std::smatch match;
            if (std::regex_match(header, match, header_regex)) {
                const std::string & key = match[1];
                const std::string & value = match[2];
                if (std::regex_match(key, match, etag_regex)) {
                    headers->etag = value;
                } else if (std::regex_match(key, match, last_modified_regex)) {
                    headers->last_modified = value;
                }
            }
            return n_items;
        };

        curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
        curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
        curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
        curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);

1290
1291
        bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
        if (!was_perform_successful) {
1292
1293
1294
1295
1296
1297
1298
1299
1300
            return false;
        }

        long http_code = 0;
        curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
        if (http_code != 200) {
            // HEAD not supported, we don't know if the file has changed
            // force trigger downloading
            force_download = true;
1301
            LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
1302
1303
1304
1305
1306
1307
        }
    }

    bool should_download = !file_exists || force_download;
    if (!should_download) {
        if (!etag.empty() && etag != headers.etag) {
1308
            LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
1309
1310
            should_download = true;
        } else if (!last_modified.empty() && last_modified != headers.last_modified) {
1311
            LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
1312
1313
1314
1315
1316
1317
            should_download = true;
        }
    }
    if (should_download) {
        std::string path_temporary = path + ".downloadInProgress";
        if (file_exists) {
1318
            LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
1319
            if (remove(path.c_str()) != 0) {
1320
                LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
                return false;
            }
        }

        // Set the output file

        struct FILE_deleter {
            void operator()(FILE * f) const {
                fclose(f);
            }
        };

        std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
        if (!outfile) {
1335
            LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
            return false;
        }

        typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
        auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
            return fwrite(data, size, nmemb, (FILE *)fd);
        };
        curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
        curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
        curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());

        //  display download progress
        curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);

        // helper function to hide password in URL
        auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
            std::size_t protocol_pos = url.find("://");
            if (protocol_pos == std::string::npos) {
                return url;  // Malformed URL
            }

            std::size_t at_pos = url.find('@', protocol_pos + 3);
            if (at_pos == std::string::npos) {
                return url;  // No password in URL
            }

            return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
        };

        // start the download
1366
1367
1368
1369
        LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
            llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
        bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
        if (!was_perform_successful) {
1370
1371
1372
1373
1374
1375
            return false;
        }

        long http_code = 0;
        curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
        if (http_code < 200 || http_code >= 400) {
1376
            LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
            return false;
        }

        // Causes file to be closed explicitly here before we rename it.
        outfile.reset();

        // Write the updated JSON metadata file.
        metadata.update({
            {"url", url},
            {"etag", headers.etag},
            {"lastModified", headers.last_modified}
        });
        std::ofstream(metadata_path) << metadata.dump(4);
1390
        LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
1391
1392

        if (rename(path_temporary.c_str(), path.c_str()) != 0) {
1393
            LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
1394
1395
1396
1397
1398
1399
1400
            return false;
        }
    }

    return true;
}

1401
1402
1403
1404
struct llama_model * common_load_model_from_url(
        const std::string & model_url,
        const std::string & local_path,
        const std::string & hf_token,
1405
1406
        const struct llama_model_params & params) {
    // Basic validation of the model_url
1407
    if (model_url.empty()) {
1408
        LOG_ERR("%s: invalid model_url\n", __func__);
1409
1410
1411
        return NULL;
    }

1412
    if (!common_download_file(model_url, local_path, hf_token)) {
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
        return NULL;
    }

    // check for additional GGUFs split to download
    int n_split = 0;
    {
        struct gguf_init_params gguf_params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ NULL,
        };
1423
        auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
1424
        if (!ctx_gguf) {
1425
            LOG_ERR("\n%s:  failed to load input GGUF from %s\n", __func__, local_path.c_str());
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
            return NULL;
        }

        auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
        if (key_n_split >= 0) {
            n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
        }

        gguf_free(ctx_gguf);
    }

    if (n_split > 1) {
        char split_prefix[PATH_MAX] = {0};
        char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};

        // Verify the first split file format
        // and extract split URL and PATH prefixes
        {
1444
1445
            if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
                LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
1446
1447
1448
                return NULL;
            }

1449
1450
            if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
                LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
                return NULL;
            }
        }

        // Prepare download in parallel
        std::vector<std::future<bool>> futures_download;
        for (int idx = 1; idx < n_split; idx++) {
            futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
                char split_path[PATH_MAX] = {0};
                llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);

                char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
                llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);

1465
                return common_download_file(split_url, split_path, hf_token);
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
            }, idx));
        }

        // Wait for all downloads to complete
        for (auto & f : futures_download) {
            if (!f.get()) {
                return NULL;
            }
        }
    }

1477
    return llama_model_load_from_file(local_path.c_str(), params);
1478
1479
}

1480
1481
1482
1483
1484
struct llama_model * common_load_model_from_hf(
        const std::string & repo,
        const std::string & remote_path,
        const std::string & local_path,
        const std::string & hf_token,
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
        const struct llama_model_params & params) {
    // construct hugging face model url:
    //
    //  --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
    //    https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
    //
    //  --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
    //    https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
    //

    std::string model_url = "https://huggingface.co/";
    model_url += repo;
    model_url += "/resolve/main/";
1498
    model_url += remote_path;
1499

1500
    return common_load_model_from_url(model_url, local_path, hf_token, params);
1501
1502
}

1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
/**
 * Allow getting the HF file from the HF repo with tag (like ollama), for example:
 * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
 * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
 * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
 * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
 *
 * Return pair of <repo, file> (with "repo" already having tag removed)
 *
 * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
 */
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
    auto parts = string_split<std::string>(hf_repo_with_tag, ':');
    std::string tag = parts.size() > 1 ? parts.back() : "latest";
    std::string hf_repo = parts[0];
    if (string_split<std::string>(hf_repo, '/').size() != 2) {
        throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
    }

    // fetch model info from Hugging Face Hub API
    json model_info;
    curl_ptr       curl(curl_easy_init(), &curl_easy_cleanup);
    curl_slist_ptr http_headers;
    std::string res_str;
    std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
    curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
    curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
    typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
    auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
        static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
        return size * nmemb;
    };
    curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
    curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
    curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
    if (!hf_token.empty()) {
        std::string auth_header = "Authorization: Bearer " + hf_token;
        http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
    }
    // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
    http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
    http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
    curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);

    CURLcode res = curl_easy_perform(curl.get());

    if (res != CURLE_OK) {
        throw std::runtime_error("error: cannot make GET request to HF API");
    }

    long res_code;
    curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
    if (res_code == 200) {
        model_info = json::parse(res_str);
    } else if (res_code == 401) {
        throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
    } else {
        throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
    }

    // check response
    if (!model_info.contains("ggufFile")) {
        throw std::runtime_error("error: model does not have ggufFile");
    }
    json & gguf_file = model_info.at("ggufFile");
    if (!gguf_file.contains("rfilename")) {
        throw std::runtime_error("error: ggufFile does not have rfilename");
    }

    return std::make_pair(hf_repo, gguf_file.at("rfilename"));
}

1577
1578
#else

1579
1580
1581
1582
struct llama_model * common_load_model_from_url(
        const std::string & /*model_url*/,
        const std::string & /*local_path*/,
        const std::string & /*hf_token*/,
1583
        const struct llama_model_params & /*params*/) {
1584
    LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
1585
1586
1587
    return nullptr;
}

1588
1589
1590
1591
1592
struct llama_model * common_load_model_from_hf(
        const std::string & /*repo*/,
        const std::string & /*remote_path*/,
        const std::string & /*local_path*/,
        const std::string & /*hf_token*/,
1593
        const struct llama_model_params & /*params*/) {
1594
    LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
1595
1596
1597
    return nullptr;
}

1598
1599
1600
1601
1602
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
    LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
    return std::make_pair("", "");
}

1603
1604
1605
1606
1607
1608
#endif // LLAMA_USE_CURL

//
// Batch utils
//

1609
void common_batch_clear(struct llama_batch & batch) {
1610
1611
1612
    batch.n_tokens = 0;
}

1613
void common_batch_add(
1614
1615
1616
1617
1618
                 struct llama_batch & batch,
                        llama_token   id,
                          llama_pos   pos,
    const std::vector<llama_seq_id> & seq_ids,
                               bool   logits) {
1619
1620
    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded");

1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
    batch.token   [batch.n_tokens] = id;
    batch.pos     [batch.n_tokens] = pos;
    batch.n_seq_id[batch.n_tokens] = seq_ids.size();
    for (size_t i = 0; i < seq_ids.size(); ++i) {
        batch.seq_id[batch.n_tokens][i] = seq_ids[i];
    }
    batch.logits  [batch.n_tokens] = logits;

    batch.n_tokens++;
}

1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
//
// Token utils
//

size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}

    return i;
}

size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
    // check for empty sequences
    if (a.empty() || b.empty()) {
        return 0;
    }

    // get the lengths of the input sequences
    size_t a_len = a.size();
    size_t b_len = b.size();

    // initialize the maximum length of the longest common subsequence (LCS)
    size_t max_length = 0;

    // use two rows instead of a 2D matrix to optimize space
    std::vector<size_t> prev_row(b_len + 1, 0);
    std::vector<size_t> curr_row(b_len + 1, 0);

    // iterate through the elements of a
    for (size_t i = 1; i <= a_len; i++) {
        // iterate through the elements of b
        for (size_t j = 1; j <= b_len; j++) {
            // if elements at the current positions match
            if (a[i - 1] == b[j - 1]) {
                // if it's the first element of either sequences, set LCS length to 1
                if (i == 1 || j == 1) {
                    curr_row[j] = 1;
                } else {
                    // increment LCS length by 1 compared to the previous element
                    curr_row[j] = prev_row[j - 1] + 1;
                }

                // update max_length if necessary
                if (curr_row[j] > max_length) {
                    max_length = curr_row[j];
                }
            } else {
                // reset LCS length if elements don't match
                curr_row[j] = 0;
            }
        }

        // update the previous row for the next iteration
        prev_row = curr_row;
    }

    // return the maximum length of the LCS
    return max_length;
}

1692
1693
1694
1695
//
// Vocab utils
//

1696
std::vector<llama_token> common_tokenize(
1697
1698
1699
1700
  const struct llama_context * ctx,
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
1701
1702
1703
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_tokenize(vocab, text, add_special, parse_special);
1704
1705
}

1706
std::vector<llama_token> common_tokenize(
1707
    const struct llama_vocab * vocab,
1708
1709
1710
1711
1712
1713
           const std::string & text,
                        bool   add_special,
                        bool   parse_special) {
    // upper limit for the number of tokens
    int n_tokens = text.length() + 2 * add_special;
    std::vector<llama_token> result(n_tokens);
1714
    n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1715
1716
    if (n_tokens < 0) {
        result.resize(-n_tokens);
1717
        int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
1718
1719
1720
1721
1722
1723
1724
        GGML_ASSERT(check == -n_tokens);
    } else {
        result.resize(n_tokens);
    }
    return result;
}

1725
std::string common_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
1726
1727
1728
1729
1730
1731
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_token_to_piece(vocab, token, special);
}

std::string common_token_to_piece(const struct llama_vocab * vocab, llama_token token, bool special) {
1732
1733
    std::string piece;
    piece.resize(piece.capacity());  // using string internal cache, 15 bytes + '\n'
1734
    const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1735
1736
    if (n_chars < 0) {
        piece.resize(-n_chars);
1737
        int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
1738
1739
1740
1741
1742
1743
1744
1745
1746
        GGML_ASSERT(check == -n_chars);
    }
    else {
        piece.resize(n_chars);
    }

    return piece;
}

1747
1748
1749
1750
1751
1752
1753
std::string common_detokenize(const struct llama_context * ctx, const std::vector<llama_token> & tokens, bool special) {
    const llama_model * model = llama_get_model(ctx);
    const llama_vocab * vocab = llama_model_get_vocab(model);
    return common_detokenize(vocab, tokens, special);
}

std::string common_detokenize(const struct llama_vocab * vocab, const std::vector<llama_token> & tokens, bool special) {
1754
1755
    std::string text;
    text.resize(std::max(text.capacity(), tokens.size()));
1756
    int32_t n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1757
1758
    if (n_chars < 0) {
        text.resize(-n_chars);
1759
        n_chars = llama_detokenize(vocab, tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special);
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
        GGML_ASSERT(n_chars <= (int32_t)text.size());  // whitespace trimming is performed after per-token detokenization
    }

    text.resize(n_chars);

    // NOTE: the original tokenizer decodes bytes after collecting the pieces.
    return text;
}

//
// KV cache utils
//

1773
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
    static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";

    printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
        view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);

    llama_kv_cache_view_cell * c_curr = view.cells;
    llama_seq_id * cs_curr = view.cells_sequences;

    for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
        if (i % row_size == 0) {
            printf("\n%5d: ", i);
        }
        int seq_count = 0;
        for (int j = 0; j < view.n_seq_max; j++) {
            if (cs_curr[j] >= 0) { seq_count++; }
        }
        putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
    }

    printf("\n=== Done dumping\n");
}

1796
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
    static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

    printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
        view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);

    std::unordered_map<llama_seq_id, size_t> seqs;
    llama_kv_cache_view_cell * c_curr = view.cells;
    llama_seq_id * cs_curr = view.cells_sequences;

    for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
        for (int j = 0; j < view.n_seq_max; j++) {
            if (cs_curr[j] < 0) { continue; }
            if (seqs.find(cs_curr[j]) == seqs.end()) {
                if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
                const size_t sz = seqs.size();
                seqs[cs_curr[j]] = sz;
            }
        }
        if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
    }

    printf("=== Sequence legend: ");
    for (const auto & it : seqs) {
        printf("%zu=%d, ", it.second, it.first);
    }
    printf("'+'=other sequence ids");

    c_curr = view.cells;
    cs_curr = view.cells_sequences;
    for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
        if (i % row_size == 0) {
            printf("\n%5d: ", i);
        }
        for (int j = 0; j < view.n_seq_max; j++) {
            if (cs_curr[j] >= 0) {
                const auto & it = seqs.find(cs_curr[j]);
                putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
            } else {
                putchar('.');
            }
        }
        putchar(' ');
    }

    printf("\n=== Done dumping\n");
}

//
// Embedding utils
//

1848
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm) {
1849
1850
1851
1852
1853
1854
1855
1856
    double sum = 0.0;

    switch (embd_norm) {
        case -1: // no normalisation
            sum = 1.0;
            break;
        case 0: // max absolute
            for (int i = 0; i < n; i++) {
1857
1858
1859
                if (sum < std::abs(inp[i])) {
                    sum = std::abs(inp[i]);
                }
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
            }
            sum /= 32760.0; // make an int16 range
            break;
        case 2: // euclidean
            for (int i = 0; i < n; i++) {
                sum += inp[i] * inp[i];
            }
            sum = std::sqrt(sum);
            break;
        default: // p-norm (euclidean is p-norm p=2)
            for (int i = 0; i < n; i++) {
                sum += std::pow(std::abs(inp[i]), embd_norm);
            }
            sum = std::pow(sum, 1.0 / embd_norm);
            break;
    }

    const float norm = sum > 0.0 ? 1.0 / sum : 0.0f;

    for (int i = 0; i < n; i++) {
        out[i] = inp[i] * norm;
    }
}

1884
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n){
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
    double sum  = 0.0;
    double sum1 = 0.0;
    double sum2 = 0.0;

    for (int i = 0; i < n; i++) {
        sum  += embd1[i] * embd2[i];
        sum1 += embd1[i] * embd1[i];
        sum2 += embd2[i] * embd2[i];
    }

    // Handle the case where one or both vectors are zero vectors
    if (sum1 == 0.0 || sum2 == 0.0) {
        if (sum1 == 0.0 && sum2 == 0.0) {
            return 1.0f; // two zero vectors are similar
        }
        return 0.0f;
    }

    return sum / (sqrt(sum1) * sqrt(sum2));
}

//
// Control vector utils
//

1910
1911
static common_control_vector_data common_control_vector_load_one(const common_control_vector_load_info & load_info) {
    common_control_vector_data result = { -1, {} };
1912
1913
1914
1915
1916
1917
1918
1919

    ggml_context * ctx = nullptr;
    struct gguf_init_params meta_gguf_params = {
        /* .no_alloc = */ false,
        /* .ctx      = */ &ctx,
    };
    struct gguf_context * ctx_gguf = gguf_init_from_file(load_info.fname.c_str(), meta_gguf_params);
    if (!ctx_gguf) {
1920
        LOG_ERR("%s: failed to load control vector file from %s\n", __func__, load_info.fname.c_str());
1921
1922
1923
1924
1925
        return result;
    }

    int32_t n_tensors = gguf_get_n_tensors(ctx_gguf);
    if (n_tensors == 0) {
1926
        LOG_WRN("%s: no direction tensors found in %s\n", __func__, load_info.fname.c_str());
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
    }

    for (int i = 0; i < n_tensors; i++) {
        std::string name = gguf_get_tensor_name(ctx_gguf, i);

        int layer_idx = -1;

        // split on '.'
        size_t dotpos = name.find('.');
        if (dotpos != std::string::npos && name.substr(0, dotpos) == "direction") {
            try {
                layer_idx = std::stoi(name.substr(dotpos + 1));
            } catch (...) {
                layer_idx = -1;
            }
        }
        if (layer_idx < 0) {
1944
            LOG_ERR("%s: invalid/unparsable direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1945
1946
1947
            result.n_embd = -1;
            break;
        } else if (layer_idx == 0) {
1948
            LOG_ERR("%s: invalid (zero) direction tensor layer index in %s\n", __func__, load_info.fname.c_str());
1949
1950
1951
1952
1953
1954
            result.n_embd = -1;
            break;
        }

        struct ggml_tensor * tensor = ggml_get_tensor(ctx, name.c_str());
        if (tensor->type != GGML_TYPE_F32) {
1955
            LOG_ERR("%s: invalid (non-F32) direction tensor type in %s\n", __func__, load_info.fname.c_str());
1956
1957
1958
1959
            result.n_embd = -1;
            break;
        }
        if (ggml_n_dims(tensor) != 1) {
1960
            LOG_ERR("%s: invalid (non-1D) direction tensor shape in %s\n", __func__, load_info.fname.c_str());
1961
1962
1963
1964
1965
1966
1967
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result.n_embd = ggml_nelements(tensor);
        } else if (ggml_nelements(tensor) != result.n_embd) {
1968
            LOG_ERR("%s: direction tensor in %s does not match previous dimensions\n", __func__, load_info.fname.c_str());
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
            result.n_embd = -1;
            break;
        }

        // extend if necessary - do not store data for layer 0 (it's not used)
        result.data.resize(std::max(result.data.size(), static_cast<size_t>(result.n_embd * layer_idx)), 0.0f);

        const float * src = (const float *) tensor->data;
        float * dst = result.data.data() + result.n_embd * (layer_idx - 1);  // layer 1 at [0]
        for (int j = 0; j < result.n_embd; j++) {
            dst[j] += src[j] * load_info.strength;  // allows multiple directions for same layer in same file
        }

    }

    if (result.n_embd == -1) {
1985
        LOG_WRN("%s: skipping %s due to invalid direction tensors\n", __func__, load_info.fname.c_str());
1986
1987
1988
1989
1990
1991
1992
1993
1994
        result.data.clear();
    }

    gguf_free(ctx_gguf);
    ggml_free(ctx);

    return result;
}

1995
1996
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos) {
    common_control_vector_data result = { -1, {} };
1997
1998

    for (const auto & info : load_infos) {
1999
        auto cur = common_control_vector_load_one(info);
2000
2001
2002
2003
2004
2005

        if (cur.n_embd == -1) {
            result.n_embd = -1;
            break;
        }
        if (result.n_embd != -1 && result.n_embd != cur.n_embd) {
2006
            LOG_ERR("%s: control vectors in %s does not match previous dimensions\n", __func__, info.fname.c_str());
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
            result.n_embd = -1;
            break;
        }

        if (result.n_embd == -1) {
            result = std::move(cur);
        } else {
            result.data.resize(std::max(result.data.size(), cur.data.size()), 0.0f);  // extend if necessary
            for (size_t i = 0; i < cur.data.size(); i++) {
                result.data[i] += cur.data[i];
            }
        }
    }

    if (result.n_embd == -1) {
2022
        LOG_ERR("%s: no valid control vector files passed\n", __func__);
2023
2024
2025
2026
2027
2028
        result.data.clear();
    }

    return result;
}