clip.cpp 219 KB
Newer Older
1
2
3
4
5
// NOTE: This is modified from clip.cpp only for LLaVA,
// so there might be still unnecessary artifacts hanging around
// I'll gradually clean and extend it
// Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
#include "clip.h"
6
#include "clip-impl.h"
7
#include "ggml.h"
8
#include "ggml-cpp.h"
9
10
#include "ggml-alloc.h"
#include "ggml-backend.h"
11
#include "gguf.h"
12
13
14
15
16
17
18
19

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <map>
#include <stdexcept>
20
#include <unordered_set>
21
22
23
#include <vector>
#include <cinttypes>
#include <limits>
24
#include <array>
25
#include <functional>
26
27
28
29
30
31
32
33
34
35
36
37
38
39

#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
    #define NOMINMAX
#endif
#include <windows.h>
#if __GLIBCXX__
#include <cstdio>
#include <ext/stdio_filebuf.h>
#include <fcntl.h>
#endif
#endif

Daniel Hiltgen's avatar
Daniel Hiltgen committed
40
struct clip_logger_state g_logger_state = {clip_log_callback_default, NULL};
41

42
43
enum ffn_op_type {
    FFN_GELU,
44
    FFN_GELU_ERF,
45
46
47
48
49
50
51
52
53
    FFN_SILU,
    FFN_GELU_QUICK,
};

enum norm_type {
    NORM_TYPE_NORMAL,
    NORM_TYPE_RMS,
};

54
//#define CLIP_DEBUG_FUNCTIONS
55
56
57
58
59

#ifdef CLIP_DEBUG_FUNCTIONS
static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
60
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
        return;
    }

    // PPM header: P6 format, width, height, and max color value
    file << "P6\n" << img.nx << " " << img.ny << "\n255\n";

    // Write pixel data
    for (size_t i = 0; i < img.buf.size(); i += 3) {
        // PPM expects binary data in RGB format, which matches our image buffer
        file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
    }

    file.close();
}

static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
    std::ofstream file(filename, std::ios::binary);
    if (!file.is_open()) {
79
        LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        return;
    }

    int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
    int bytesPerPixel = 3;
    int widthInBytes = img.nx * bytesPerPixel;
    int paddingAmount = (4 - (widthInBytes % 4)) % 4;
    int stride = widthInBytes + paddingAmount;

    // Bitmap file header
    unsigned char fileHeader[14] = {
        'B','M',     // Signature
        0,0,0,0,    // Image file size in bytes
        0,0,0,0,    // Reserved
        54,0,0,0    // Start of pixel array
    };

    // Total file size
    fileSize = 54 + (stride * img.ny);
    fileHeader[2] = (unsigned char)(fileSize);
    fileHeader[3] = (unsigned char)(fileSize >> 8);
    fileHeader[4] = (unsigned char)(fileSize >> 16);
    fileHeader[5] = (unsigned char)(fileSize >> 24);

    // Bitmap information header (BITMAPINFOHEADER)
    unsigned char infoHeader[40] = {
        40,0,0,0,   // Size of this header (40 bytes)
        0,0,0,0,    // Image width
        0,0,0,0,    // Image height
        1,0,        // Number of color planes
        24,0,       // Bits per pixel
        0,0,0,0,    // No compression
        0,0,0,0,    // Image size (can be 0 for no compression)
        0,0,0,0,    // X pixels per meter (not specified)
        0,0,0,0,    // Y pixels per meter (not specified)
        0,0,0,0,    // Total colors (color table not used)
        0,0,0,0     // Important colors (all are important)
    };

    // Width and height in the information header
    infoHeader[4] = (unsigned char)(img.nx);
    infoHeader[5] = (unsigned char)(img.nx >> 8);
    infoHeader[6] = (unsigned char)(img.nx >> 16);
    infoHeader[7] = (unsigned char)(img.nx >> 24);
    infoHeader[8] = (unsigned char)(img.ny);
    infoHeader[9] = (unsigned char)(img.ny >> 8);
    infoHeader[10] = (unsigned char)(img.ny >> 16);
    infoHeader[11] = (unsigned char)(img.ny >> 24);

    // Write file headers
    file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
    file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));

    // Pixel data
    std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
    for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
        for (int x = 0; x < img.nx; ++x) {
            // Each pixel
            size_t pixelIndex = (y * img.nx + x) * 3;
            unsigned char pixel[3] = {
                img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
                img.buf[pixelIndex + 1],
                img.buf[pixelIndex]
            };
            file.write(reinterpret_cast<char*>(pixel), 3);
        }
        // Write padding for the row
        file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
    }

    file.close();
}

// debug function to convert f32 to u8
static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(3 * src.nx * src.ny);
    for (size_t i = 0; i < src.buf.size(); ++i) {
        dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
    }
}
#endif


//
// clip layers
//

169
170
171
172
173
enum patch_merge_type {
    PATCH_MERGE_FLAT,
    PATCH_MERGE_SPATIAL_UNPAD,
};

174
struct clip_hparams {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
175
176
177
178
179
180
181
    int32_t image_size = 0;
    int32_t patch_size = 0;
    int32_t n_embd = 0;
    int32_t n_ff = 0;
    int32_t projection_dim = 0;
    int32_t n_head = 0;
    int32_t n_layer = 0;
182
    // idefics3
Daniel Hiltgen's avatar
Daniel Hiltgen committed
183
184
185
186
    int32_t image_longest_edge = 0;
    int32_t image_min_pixels = -1;
    int32_t image_max_pixels = -1;
    int32_t n_merge = 0; // number of patch merges **per-side**
187

188
189
190
    float image_mean[3];
    float image_std[3];

191
192
193
    // for models using dynamic image size, we need to have a smaller image size to warmup
    // otherwise, user will get OOM everytime they load the model
    int32_t warmup_image_size = 0;
194
    int32_t warmup_audio_size = 3000;
195
196
197

    ffn_op_type ffn_op = FFN_GELU;

198
    patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
199

200
201
    float eps = 1e-6;
    float rope_theta = 0.0;
202

203
    std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
204
    int32_t image_crop_resolution;
205
    std::unordered_set<int32_t> vision_feature_layer;
206
207
    int32_t attn_window_size = 0;
    int32_t n_wa_pattern = 0;
208
209
210
211
212
213
214
215

    // audio
    int32_t n_mel_bins = 0; // whisper preprocessor
    int32_t proj_stack_factor = 0; // ultravox

    // legacy
    bool has_llava_projector = false;
    int minicpmv_version = 0;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
216
    int32_t minicpmv_query_num = 0;         // MiniCPM-V query number
Daniel Hiltgen's avatar
Daniel Hiltgen committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    // custom value provided by user, can be undefined if not set
    int32_t custom_image_min_tokens = -1;
    int32_t custom_image_max_tokens = -1;

    void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
        const int cur_merge = n_merge == 0 ? 1 : n_merge;
        const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
        image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
        image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
        warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
    }

    void set_warmup_n_tokens(int n_tokens) {
        int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
        GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
        const int cur_merge = n_merge == 0 ? 1 : n_merge;
        warmup_image_size = n_tok_per_side * patch_size * cur_merge;
        // TODO: support warmup size for custom token numbers
    }
237
238
239
240
};

struct clip_layer {
    // attention
241
242
243
244
245
246
    ggml_tensor * k_w = nullptr;
    ggml_tensor * k_b = nullptr;
    ggml_tensor * q_w = nullptr;
    ggml_tensor * q_b = nullptr;
    ggml_tensor * v_w = nullptr;
    ggml_tensor * v_b = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
247
248
    ggml_tensor * qkv_w = nullptr;
    ggml_tensor * qkv_b = nullptr;
249

250
251
    ggml_tensor * o_w = nullptr;
    ggml_tensor * o_b = nullptr;
252

253
254
    ggml_tensor * k_norm = nullptr;
    ggml_tensor * q_norm = nullptr;
255

256
257
258
    // layernorm 1
    ggml_tensor * ln_1_w = nullptr;
    ggml_tensor * ln_1_b = nullptr;
259

260
261
262
263
264
265
    ggml_tensor * ff_up_w = nullptr;
    ggml_tensor * ff_up_b = nullptr;
    ggml_tensor * ff_gate_w = nullptr;
    ggml_tensor * ff_gate_b = nullptr;
    ggml_tensor * ff_down_w = nullptr;
    ggml_tensor * ff_down_b = nullptr;
266
267

    // layernorm 2
268
269
270
271
272
273
    ggml_tensor * ln_2_w = nullptr;
    ggml_tensor * ln_2_b = nullptr;

    // layer scale (no bias)
    ggml_tensor * ls_1_w = nullptr;
    ggml_tensor * ls_2_w = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
274
275
276
277
278
279
280
281
282
283
284
285

    // qwen3vl deepstack merger
    ggml_tensor * deepstack_norm_w = nullptr;
    ggml_tensor * deepstack_norm_b = nullptr;
    ggml_tensor * deepstack_fc1_w = nullptr;
    ggml_tensor * deepstack_fc1_b = nullptr;
    ggml_tensor * deepstack_fc2_w = nullptr;
    ggml_tensor * deepstack_fc2_b = nullptr;

    bool has_deepstack() const {
        return deepstack_fc1_w != nullptr;
    }
286
287
};

288
289
290
291
struct clip_model {
    clip_modality modality = CLIP_MODALITY_VISION;
    projector_type proj_type = PROJECTOR_TYPE_MLP;
    clip_hparams hparams;
292
293

    // embeddings
294
295
296
297
298
    ggml_tensor * class_embedding = nullptr;
    ggml_tensor * patch_embeddings_0 = nullptr;
    ggml_tensor * patch_embeddings_1 = nullptr;  // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
    ggml_tensor * patch_bias = nullptr;
    ggml_tensor * position_embeddings = nullptr;
299

300
301
    ggml_tensor * pre_ln_w = nullptr;
    ggml_tensor * pre_ln_b = nullptr;
302
303
304

    std::vector<clip_layer> layers;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
305
306
    int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer

307
308
    ggml_tensor * post_ln_w;
    ggml_tensor * post_ln_b;
309

310
311
312
    ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
    ggml_tensor * mm_fc_w;
    ggml_tensor * mm_fc_b;
313
314

    // LLaVA projection
315
    ggml_tensor * mm_input_norm_w = nullptr;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
316
    ggml_tensor * mm_input_norm_b = nullptr;
317
318
319
320
    ggml_tensor * mm_0_w = nullptr;
    ggml_tensor * mm_0_b = nullptr;
    ggml_tensor * mm_2_w = nullptr;
    ggml_tensor * mm_2_b = nullptr;
321

322
    ggml_tensor * image_newline = nullptr;
323
324

    // Yi type models with mlp+normalization projection
325
326
327
328
329
330
331
332
333
334
    ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
    ggml_tensor * mm_1_b = nullptr;
    ggml_tensor * mm_3_w = nullptr;
    ggml_tensor * mm_3_b = nullptr;
    ggml_tensor * mm_4_w = nullptr;
    ggml_tensor * mm_4_b = nullptr;

    // GLMV-Edge projection
    ggml_tensor * mm_model_adapter_conv_w = nullptr;
    ggml_tensor * mm_model_adapter_conv_b = nullptr;
335

336
    // MobileVLM projection
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    ggml_tensor * mm_model_mlp_1_w = nullptr;
    ggml_tensor * mm_model_mlp_1_b = nullptr;
    ggml_tensor * mm_model_mlp_3_w = nullptr;
    ggml_tensor * mm_model_mlp_3_b = nullptr;
    ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
    ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
    ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
    ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
361
362

    // MobileVLM_V2 projection
363
364
365
366
367
368
    ggml_tensor * mm_model_mlp_0_w = nullptr;
    ggml_tensor * mm_model_mlp_0_b = nullptr;
    ggml_tensor * mm_model_mlp_2_w = nullptr;
    ggml_tensor * mm_model_mlp_2_b = nullptr;
    ggml_tensor * mm_model_peg_0_w = nullptr;
    ggml_tensor * mm_model_peg_0_b = nullptr;
369
370

    // MINICPMV projection
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    ggml_tensor * mm_model_pos_embed_k = nullptr;
    ggml_tensor * mm_model_query = nullptr;
    ggml_tensor * mm_model_proj = nullptr;
    ggml_tensor * mm_model_kv_proj = nullptr;
    ggml_tensor * mm_model_attn_q_w = nullptr;
    ggml_tensor * mm_model_attn_q_b = nullptr;
    ggml_tensor * mm_model_attn_k_w = nullptr;
    ggml_tensor * mm_model_attn_k_b = nullptr;
    ggml_tensor * mm_model_attn_v_w = nullptr;
    ggml_tensor * mm_model_attn_v_b = nullptr;
    ggml_tensor * mm_model_attn_o_w = nullptr;
    ggml_tensor * mm_model_attn_o_b = nullptr;
    ggml_tensor * mm_model_ln_q_w = nullptr;
    ggml_tensor * mm_model_ln_q_b = nullptr;
    ggml_tensor * mm_model_ln_kv_w = nullptr;
    ggml_tensor * mm_model_ln_kv_b = nullptr;
    ggml_tensor * mm_model_ln_post_w = nullptr;
    ggml_tensor * mm_model_ln_post_b = nullptr;
389
390

    // gemma3
391
392
    ggml_tensor * mm_input_proj_w = nullptr;
    ggml_tensor * mm_soft_emb_norm_w = nullptr;
393
394

    // pixtral
395
396
    ggml_tensor * token_embd_img_break = nullptr;
    ggml_tensor * mm_patch_merger_w = nullptr;
397

398
399
400
401
402
403
404
405
    // ultravox / whisper encoder
    ggml_tensor * conv1d_1_w = nullptr;
    ggml_tensor * conv1d_1_b = nullptr;
    ggml_tensor * conv1d_2_w = nullptr;
    ggml_tensor * conv1d_2_b = nullptr;
    ggml_tensor * mm_norm_pre_w = nullptr;
    ggml_tensor * mm_norm_mid_w = nullptr;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
406
407
408
409
410
411
412
413
414
    // cogvlm
    ggml_tensor * mm_post_fc_norm_w = nullptr;
    ggml_tensor * mm_post_fc_norm_b = nullptr;
    ggml_tensor * mm_h_to_4h_w = nullptr;
    ggml_tensor * mm_gate_w = nullptr;
    ggml_tensor * mm_4h_to_h_w = nullptr;
    ggml_tensor * mm_boi = nullptr;
    ggml_tensor * mm_eoi = nullptr;

415
416
417
418
    bool audio_has_avgpool() const {
        return proj_type == PROJECTOR_TYPE_QWEN2A
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
419

420
421
422
423
424
    bool audio_has_stack_frames() const {
        return proj_type == PROJECTOR_TYPE_ULTRAVOX
            || proj_type == PROJECTOR_TYPE_VOXTRAL;
    }
};
425

426
427
struct clip_ctx {
    clip_model model;
428

429
430
    gguf_context_ptr ctx_gguf;
    ggml_context_ptr ctx_data;
431
432
433

    std::vector<uint8_t> buf_compute_meta;

434
435
436
    std::vector<ggml_backend_t> backend_ptrs;
    std::vector<ggml_backend_buffer_type_t> backend_buft;

437
438
    ggml_backend_t backend = nullptr;
    ggml_backend_t backend_cpu = nullptr;
439
440
    ggml_backend_buffer_ptr buf;

441
    int max_nodes = 8192;
442
    ggml_backend_sched_ptr sched;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
443
    clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
444
    bool is_allocated = false;
445

446
447
448
    // for debugging
    bool debug_graph = false;
    std::vector<ggml_tensor *> debug_print_tensors;
449

450
    clip_ctx(clip_context_params & ctx_params) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
451
        flash_attn_type = ctx_params.flash_attn_type;
452
        debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
453
        backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
454
455
456
        if (!backend_cpu) {
            throw std::runtime_error("failed to initialize CPU backend");
        }
457
458
459
460
461
462
463
464
465
466
        if (ctx_params.use_gpu) {
            auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
            if (backend_name != nullptr) {
                backend = ggml_backend_init_by_name(backend_name, nullptr);
                if (!backend) {
                    LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
                }
            }
            if (!backend) {
                backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
467
                backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
468
469
            }
        }
470
471
472
473
474
475
476
477
478
479

        if (backend) {
            LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
            backend_ptrs.push_back(backend);
            backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
        } else {
            backend = backend_cpu;
            LOG_INF("%s: CLIP using CPU backend\n", __func__);
        }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
480
481
482
483
484
485
486
        if (ctx_params.image_min_tokens > 0) {
            model.hparams.custom_image_min_tokens = ctx_params.image_min_tokens;
        }
        if (ctx_params.image_max_tokens > 0) {
            model.hparams.custom_image_max_tokens = ctx_params.image_max_tokens;
        }

487
488
489
490
        backend_ptrs.push_back(backend_cpu);
        backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));

        sched.reset(
491
            ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
492
493
494
495
496
497
498
499
500
        );
    }

    ~clip_ctx() {
        ggml_backend_free(backend);
        if (backend != backend_cpu) {
            ggml_backend_free(backend_cpu);
        }
    }
501
502
503
504
505

    // this function is added so that we don't change too much of the existing code
    projector_type proj_type() const {
        return model.proj_type;
    }
506
507
};

508
509
struct clip_graph {
    clip_ctx * ctx;
510
    const clip_model & model;
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    const clip_hparams & hparams;

    // we only support single image per batch
    const clip_image_f32 & img;

    const int patch_size;
    const int n_patches_x;
    const int n_patches_y;
    const int n_patches;
    const int n_embd;
    const int n_head;
    const int d_head;
    const int n_layer;
    const float eps;
    const float kq_scale;

    ggml_context_ptr ctx0_ptr;
    ggml_context * ctx0;
    ggml_cgraph * gf;

    clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
            ctx(ctx),
533
            model(ctx->model),
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            hparams(model.hparams),
            img(img),
            patch_size(hparams.patch_size),
            n_patches_x(img.nx / patch_size),
            n_patches_y(img.ny / patch_size),
            n_patches(n_patches_x * n_patches_y),
            n_embd(hparams.n_embd),
            n_head(hparams.n_head),
            d_head(n_embd / n_head),
            n_layer(hparams.n_layer),
            eps(hparams.eps),
            kq_scale(1.0f / sqrtf((float)d_head)) {
        struct ggml_init_params params = {
            /*.mem_size   =*/ ctx->buf_compute_meta.size(),
            /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
            /*.no_alloc   =*/ true,
        };
        ctx0_ptr.reset(ggml_init(params));
        ctx0 = ctx0_ptr.get();
553
        gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
554
555
556
557
    }

    ggml_cgraph * build_siglip() {
        ggml_tensor * inp = build_inp();
Daniel Hiltgen's avatar
Daniel Hiltgen committed
558
559
560
561
562
563

        ggml_tensor * learned_pos_embd = model.position_embeddings;
        if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            learned_pos_embd = resize_position_embeddings();
        }

564
565
566
567
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
568
                                learned_pos_embd,
569
570
                                nullptr);

571
        if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
572
573
574
            const int batch_size = 1;
            GGML_ASSERT(n_patches_x == n_patches_y);
            const int patches_per_image = n_patches_x;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
575
            const int kernel_size = hparams.n_merge;
576

Daniel Hiltgen's avatar
Daniel Hiltgen committed
577
578
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

            // doing a pool2d to reduce the number of output tokens
            cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
            cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
            cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));

            // apply norm before projection
            cur = ggml_rms_norm(ctx0, cur, eps);
            cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);

            // apply projection
            cur = ggml_mul_mat(ctx0,
                ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
                cur);

594
        } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
595
            // pixel_shuffle
596
            // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
Daniel Hiltgen's avatar
Daniel Hiltgen committed
597
            const int scale_factor = model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
598
599
            cur = build_patch_merge_permute(cur, scale_factor);
            cur = ggml_mul_mat(ctx0, model.projection, cur);
600

Daniel Hiltgen's avatar
Daniel Hiltgen committed
601
602
        } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
            // pixel unshuffle block
Daniel Hiltgen's avatar
Daniel Hiltgen committed
603
            const int scale_factor = model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
604
            cur = build_patch_merge_permute(cur, scale_factor);
605

Daniel Hiltgen's avatar
Daniel Hiltgen committed
606
607
608
609
610
611
612
613
614
615
            // projection
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);

            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
616
617
618
619
620
621
622
623
624

        } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
            cur = build_ffn(cur,
                model.mm_0_w, model.mm_0_b,
                nullptr, nullptr,
                model.mm_1_w, model.mm_1_b,
                hparams.ffn_op,
                -1);

625
626
        } else {
            GGML_ABORT("SigLIP: Unsupported projector type");
627
628
        }

629
630
        // build the graph
        ggml_build_forward_expand(gf, cur);
631

632
633
        return gf;
    }
634

635
    ggml_cgraph * build_pixtral() {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
636
        const int n_merge = hparams.n_merge;
637

638
639
640
641
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
642

643
644
645
        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
646

647
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
648
            return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
649
        };
650

651
652
653
654
655
656
657
        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_RMS,
                                hparams.ffn_op,
                                nullptr, // no learned pos embd
                                add_pos);
658

659
660
661
        // mistral small 3.1 patch merger
        // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
        if (model.mm_patch_merger_w) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
662
            GGML_ASSERT(hparams.n_merge > 0);
663

664
            cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
665

666
667
668
669
            // reshape image tokens to 2D grid
            cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
            cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
            cur = ggml_cont(ctx0, cur);
670

671
672
673
674
            // torch.nn.functional.unfold is just an im2col under the hood
            // we just need a dummy kernel to make it work
            ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
            cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
675

676
677
678
            // project to n_embd
            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
            cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
679
680
        }

681
682
683
684
685
686
        // LlavaMultiModalProjector (always using GELU activation)
        {
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            if (model.mm_1_b) {
                cur = ggml_add(ctx0, cur, model.mm_1_b);
            }
687

688
689
690
691
692
693
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            if (model.mm_2_b) {
                cur = ggml_add(ctx0, cur, model.mm_2_b);
            }
        }
694

695
        // arrangement of the [IMG_BREAK] token
Daniel Hiltgen's avatar
Daniel Hiltgen committed
696
        if (model.token_embd_img_break) {
697
698
699
700
            // not efficient, but works
            // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
            // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
            // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
701

702
703
704
705
706
            const int p_y             = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
            const int p_x             = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
            const int p_total         = p_x * p_y;
            const int n_embd_text     = cur->ne[0];
            const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
707

708
709
710
711
712
713
714
715
716
            ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
            ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
            tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
            tok = ggml_add(ctx0, tok, model.token_embd_img_break);
            tmp = ggml_concat(ctx0, tmp, tok, 1);
            cur = ggml_view_2d(ctx0, tmp,
                n_embd_text, n_tokens_output,
                ggml_row_size(tmp->type, n_embd_text), 0);
        }
717

718
719
        // build the graph
        ggml_build_forward_expand(gf, cur);
720

721
        return gf;
722
723
    }

724
725
726
727
    // Qwen2VL and Qwen2.5VL use M-RoPE
    ggml_cgraph * build_qwen2vl() {
        GGML_ASSERT(model.patch_bias == nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);
728

729
730
731
732
733
        const int batch_size       = 1;
        const bool use_window_attn = hparams.n_wa_pattern > 0;
        const int n_wa_pattern     = hparams.n_wa_pattern;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
734

735
        norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
736
737
            ? NORM_TYPE_RMS // qwen 2.5 vl
            : NORM_TYPE_NORMAL; // qwen 2 vl
738

739
        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
740

741
742
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
743

744
745
        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);
746

747
748
749
750
751
        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
752
753
            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_cont_4d(
754
755
756
757
758
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
759
760
            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
            inp = ggml_cont_3d(
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        ggml_tensor * inpL           = inp;
        ggml_tensor * window_mask    = nullptr;
        ggml_tensor * window_idx     = nullptr;
        ggml_tensor * inv_window_idx = nullptr;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        if (use_window_attn) {
            // handle window attention inputs
            inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(inv_window_idx, "inv_window_idx");
            ggml_set_input(inv_window_idx);
            // mask for window attention
            window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
            ggml_set_name(window_mask, "window_mask");
            ggml_set_input(window_mask);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
789
790
791
792
793
794
795
796
797
            // if flash attn is used, we need to pad the mask and cast to f16
            if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
                int n_pad = GGML_PAD(window_mask->ne[1], GGML_KQ_MASK_PAD) - window_mask->ne[1];
                if (n_pad > 0) {
                    window_mask = ggml_pad(ctx0, window_mask, 0, n_pad, 0, 0);
                }
                window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
            }

798
799
800
801
802
803
804
805
806
807
808
            // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
            inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
            inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
809

810
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
811

812
813
814
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);
815

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
            // self-attention
            {
                ggml_tensor * Qcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
                ggml_tensor * Kcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
                ggml_tensor * Vcur = ggml_add(ctx0,
                    ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);

                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
840

841
842
                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);
843

844
                ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
845

846
847
848
849
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
                cb(cur, "attn_out", il);
            }
850

851
852
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
853

854
            inpL = cur; // inpL = residual, cur = hidden_states
855

856
            cb(cur, "ffn_inp", il);
857

858
859
860
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
861

862
863
864
865
866
867
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
868

869
            cb(cur, "ffn_out", il);
870

871
872
873
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
874

875
            inpL = cur;
876
877
        }

878
879
880
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
881
882
        }

883
884
885
        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
886

887
888
        embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
889

890
891
892
893
        // GELU activation
        embeddings = ggml_gelu(ctx0, embeddings);

        // Second linear layer
894
895
896
        embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
        embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);

897
898
899
900
        if (use_window_attn) {
            window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
            ggml_set_name(window_idx, "window_idx");
            ggml_set_input(window_idx);
901

902
903
904
905
906
907
            // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
            GGML_ASSERT(batch_size == 1);
            embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
            embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
            embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
        }
908

909
910
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
911

912
        return gf;
913
914
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
    // Qwen3VL
    ggml_cgraph * build_qwen3vl() {
        GGML_ASSERT(model.patch_bias != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
        GGML_ASSERT(model.class_embedding == nullptr);

        const int batch_size       = 1;
        const int n_pos            = n_patches;
        const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position

        norm_type norm_t = NORM_TYPE_NORMAL;

        int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};

        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);

        GGML_ASSERT(img.nx % (patch_size * 2) == 0);
        GGML_ASSERT(img.ny % (patch_size * 2) == 0);

        // second conv dimension
        {
            auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
            inp = ggml_add(ctx0, inp, inp_1);

            inp = ggml_permute(ctx0, inp, 1, 2, 0, 3);  // [w, h, c, b] -> [c, w, h, b]
            inp = ggml_cont_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
            inp = ggml_reshape_4d(
                ctx0, inp,
                n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
            inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
            inp = ggml_cont_3d(
                ctx0, inp,
                n_embd, n_patches_x * n_patches_y, batch_size);
        }

        // add patch bias
        if (model.patch_bias != nullptr) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }

        // calculate absolute position embedding and apply
        ggml_tensor * learned_pos_embd = resize_position_embeddings();
        learned_pos_embd = ggml_cont_4d(
            ctx0, learned_pos_embd,
            n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
        learned_pos_embd = ggml_reshape_4d(
            ctx0, learned_pos_embd,
            n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
        learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
        learned_pos_embd = ggml_cont_3d(
            ctx0, learned_pos_embd,
            n_embd, n_patches_x * n_patches_y, batch_size);
        inp = ggml_add(ctx0, inp, learned_pos_embd);
        cb(inp, "inp_pos_emb", -1);

        ggml_tensor * inpL = inp;

        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
        }

        // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
        ggml_tensor * deepstack_features = nullptr;
        const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];

            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "ln1", il);

            // self-attention
            {
                cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
                cur = ggml_add(ctx0, cur, layer.qkv_b);

                ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                        /* nb1    */ ggml_row_size(cur->type, d_head),
                        /* nb2    */ cur->nb[1],
                        /* offset */ 0);

                ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                        /* nb1    */ ggml_row_size(cur->type, d_head),
                        /* nb2    */ cur->nb[1],
                        /* offset */ ggml_row_size(cur->type, n_embd));

                ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos,
                        /* nb1    */ ggml_row_size(cur->type, d_head),
                        /* nb2    */ cur->nb[1],
                        /* offset */ ggml_row_size(cur->type, 2 * n_embd));

                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);

                // apply M-RoPE
                Qcur = ggml_rope_multi(
                    ctx0, Qcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
                Kcur = ggml_rope_multi(
                    ctx0, Kcur, positions, nullptr,
                    d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);

                cb(Qcur, "Qcur_rope", il);
                cb(Kcur, "Kcur_rope", il);

                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }

            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);

            inpL = cur; // inpL = residual, cur = hidden_states

            cb(cur, "ffn_inp", il);

            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);

            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);

            cb(cur, "ffn_out", il);

            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);

            if (layer.has_deepstack()) {
                ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
                feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
                feat = build_ffn(feat,
                    layer.deepstack_fc1_w, layer.deepstack_fc1_b,
                    nullptr, nullptr,
                    layer.deepstack_fc2_w, layer.deepstack_fc2_b,
                    ffn_op_type::FFN_GELU, il);

                if(!deepstack_features) {
                    deepstack_features = feat;
                } else {
                    // concat along the feature dimension
                    deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
                }
            }

            inpL = cur;
        }

        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
        }

        // multimodal projection
        ggml_tensor * embeddings = inpL;
        embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);

        embeddings = build_ffn(embeddings,
            model.mm_0_w, model.mm_0_b,
            nullptr, nullptr,
            model.mm_1_w, model.mm_1_b,
            ffn_op_type::FFN_GELU, -1);

        embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension

        // build the graph
        ggml_build_forward_expand(gf, embeddings);

        return gf;
    }
1105

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1106
    ggml_cgraph * build_minicpmv() {
1107
        GGML_ASSERT(model.class_embedding == nullptr);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1108
1109
        const int n_pos       = n_patches;
        const int n_embd_proj = clip_n_mmproj_embd(ctx);
1110

1111
        // position embeddings for the projector (not for ViT)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        // see: https://huggingface.co/openbmb/MiniCPM-o-2_6/blob/main/resampler.py#L70
        // base frequency omega
        ggml_tensor * omega = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_embd_proj / 4);
        ggml_set_name(omega, "omega");
        ggml_set_input(omega);

        // 2D input positions (using float for sinusoidal embeddings)
        ggml_tensor * pos_h = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);
        ggml_tensor * pos_w = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);
1125

1126
1127
1128
1129
        // for selecting learned pos embd, used by ViT
        struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
1130

1131
1132
1133
1134
        ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);

        ggml_tensor * inp = build_inp();
        ggml_tensor * embeddings = build_vit(
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1135
                                inp, n_pos,
1136
1137
1138
1139
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                nullptr);
1140

1141
        // resampler projector (it is just another transformer)
1142

1143
1144
        ggml_tensor * q = model.mm_model_query;
        ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
1145

1146
        // norm
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1147
        q = build_norm(q, model.mm_model_ln_q_w,  model.mm_model_ln_q_b,  NORM_TYPE_NORMAL, eps, -1);
1148
        v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
1149

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        // calculate sinusoidal pos embd
        ggml_tensor * pos_embed = nullptr;
        {
            // outer product
            ggml_tensor * omega_b = ggml_repeat_4d(ctx0, omega, omega->ne[0], n_pos, 1, 1); // n_pos rows
            ggml_tensor * theta_x = ggml_mul(ctx0, omega_b, pos_w);
            ggml_tensor * theta_y = ggml_mul(ctx0, omega_b, pos_h);
            // sin and cos
            ggml_tensor * pos_embd_x = ggml_concat(
                ctx0,
                ggml_sin(ctx0, theta_x),
                ggml_cos(ctx0, theta_x),
                0 // concat on first dim
            );
            ggml_tensor * pos_embd_y = ggml_concat(
                ctx0,
                ggml_sin(ctx0, theta_y),
                ggml_cos(ctx0, theta_y),
                0 // concat on first dim
            );
            pos_embed = ggml_concat(ctx0, pos_embd_x, pos_embd_y, 0);
        }

1173
1174
        // k = v + pos_embed
        ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
1175

1176
1177
1178
        // attention
        {
            const int d_head = 128;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1179
            int n_head = n_embd_proj/d_head;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1180
1181
            // Use actual config value if available, otherwise fall back to hardcoded values
            int num_query = ctx->model.hparams.minicpmv_query_num;
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
            ggml_tensor * Q = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
                model.mm_model_attn_q_b);
            ggml_tensor * K = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
                model.mm_model_attn_k_b);
            ggml_tensor * V = ggml_add(ctx0,
                ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
                model.mm_model_attn_v_b);

            Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
            K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
            V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);

            cb(Q, "resampler_Q", -1);
            cb(K, "resampler_K", -1);
            cb(V, "resampler_V", -1);

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1200
            float resampler_kq_scale = 1.0f/ sqrtf(float(d_head));
1201
1202
1203
            embeddings = build_attn(
                model.mm_model_attn_o_w,
                model.mm_model_attn_o_b,
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1204
                Q, K, V, nullptr, resampler_kq_scale, -1);
1205
1206
1207
1208
1209
1210
1211
            cb(embeddings, "resampler_attn_out", -1);
        }
        // layernorm
        embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);

        // projection
        embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
1212

1213
1214
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1215

1216
        return gf;
1217
1218
    }

1219
1220
1221
    ggml_cgraph * build_internvl() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);
1222

1223
1224
        const int n_pos = n_patches + 1;
        ggml_tensor * inp = build_inp();
1225

1226
1227
        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
1228

1229
1230
1231
1232
1233
        // The larger models use a different ViT, which uses RMS norm instead of layer norm
        // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
        norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
            ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
            : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
1234

1235
1236
1237
1238
1239
1240
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                norm_t,
                                hparams.ffn_op,
                                model.position_embeddings,
                                nullptr);
1241

1242
1243
1244
1245
        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);
1246

1247
        // pixel shuffle
1248
        {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1249
            const int scale_factor = model.hparams.n_merge;
1250
1251
1252
1253
1254
1255
            const int bsz    = 1; // batch size, always 1 for now since we don't support batching
            const int height = n_patches_y;
            const int width  = n_patches_x;
            GGML_ASSERT(scale_factor > 0);
            cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1256
            cur = ggml_cont_4d(ctx0, cur,
1257
1258
1259
1260
1261
1262
                n_embd * scale_factor * scale_factor,
                height / scale_factor,
                width / scale_factor,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
            // flatten to 2D
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1263
            cur = ggml_cont_2d(ctx0, cur,
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
                n_embd * scale_factor * scale_factor,
                cur->ne[1] * cur->ne[2]);
        }

        // projector (always using GELU activation)
        {
            // projector LayerNorm uses pytorch's default eps = 1e-5
            // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
            cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_3_b);
        }
1279

1280
1281
        // build the graph
        ggml_build_forward_expand(gf, cur);
1282

1283
1284
        return gf;
    }
1285

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
    ggml_cgraph * build_llama4() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * inp = build_inp_raw();

        // Llama4UnfoldConvolution
        {
            ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
                                                    patch_size, patch_size, 3, n_embd);
            inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
            inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
            inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
            cb(inp, "patch_conv", -1);
        }

        // add CLS token
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
            // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                model.position_embeddings,
                                add_pos);

        // remove CLS token
        cur = ggml_view_2d(ctx0, cur,
            n_embd, n_patches,
            ggml_row_size(cur->type, n_embd), 0);

        // pixel shuffle
        // based on Llama4VisionPixelShuffleMLP
        // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
        {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1339
            const int scale_factor = model.hparams.n_merge;
1340
1341
1342
1343
1344
1345
1346
1347
1348
            const int bsz = 1; // batch size, always 1 for now since we don't support batching
            GGML_ASSERT(scale_factor > 0);
            GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
            cur = ggml_reshape_4d(ctx0, cur,
                n_embd * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y,
                bsz);
            cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1349
            cur = ggml_cont_4d(ctx0, cur,
1350
1351
1352
1353
                n_embd * scale_factor * scale_factor,
                n_patches_x / scale_factor,
                n_patches_y / scale_factor,
                bsz);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1354
            //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
1355
            // flatten to 2D
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1356
            cur = ggml_cont_2d(ctx0, cur,
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
                n_embd * scale_factor * scale_factor,
                n_patches / scale_factor / scale_factor);
            cb(cur, "pixel_shuffle", -1);
        }

        // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
        {
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
            cur = ggml_gelu(ctx0, cur);
            cb(cur, "adapter_mlp", -1);
        }

        // Llama4MultiModalProjector
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
        cb(cur, "projected", -1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    ggml_cgraph * build_kimivl() {
        // 2D input positions
        ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_h, "pos_h");
        ggml_set_input(pos_h);

        ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
        ggml_set_name(pos_w, "pos_w");
        ggml_set_input(pos_w);

        ggml_tensor * learned_pos_embd = resize_position_embeddings();

        // build ViT with 2D position embeddings
        auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
            // first half is X axis and second half is Y axis
            return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
        };

        ggml_tensor * inp = build_inp();
        ggml_tensor * cur = build_vit(
                                inp, n_patches,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                learned_pos_embd,
                                add_pos);

        cb(cur, "vit_out", -1);

        {
            // patch_merger
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1411
            const int scale_factor = model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
            cur = build_patch_merge_permute(cur, scale_factor);

            // projection norm
            int proj_inp_dim = cur->ne[0];
            cur = ggml_view_2d(ctx0, cur,
                n_embd, cur->ne[1] * scale_factor * scale_factor,
                ggml_row_size(cur->type, n_embd), 0);
            cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
            cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
            cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
            cur = ggml_view_2d(ctx0, cur,
                proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
                ggml_row_size(cur->type, proj_inp_dim), 0);
            cb(cur, "proj_inp_normed", -1);

            // projection mlp
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_1_b);
            cur = ggml_gelu(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_2_b);
            cb(cur, "proj_out", -1);
        }

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

1442
1443
1444
1445
1446
    // this graph is used by llava, granite and glm
    // due to having embedding_stack (used by granite), we cannot reuse build_vit
    ggml_cgraph * build_llava() {
        const int batch_size = 1;
        const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
1447

1448
        GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
1449

1450
1451
1452
1453
1454
1455
        // Calculate the deepest feature layer based on hparams and projector type
        int max_feature_layer = n_layer;
        {
            // Get the index of the second to last layer; this is the default for models that have a llava projector
            int il_last = hparams.n_layer - 1;
            int deepest_feature_layer = -1;
1456

1457
            if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1458
1459
                il_last += 1;
            }
1460

1461
1462
1463
1464
1465
1466
            // If we set explicit vision feature layers, only go up to the deepest one
            // NOTE: only used by granite-vision models for now
            for (const auto & feature_layer : hparams.vision_feature_layer) {
                if (feature_layer > deepest_feature_layer) {
                    deepest_feature_layer = feature_layer;
                }
1467
            }
1468
1469
            max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
        }
1470

1471
        ggml_tensor * inp = build_inp();
1472

1473
1474
1475
        // concat class_embeddings and patch_embeddings
        if (model.class_embedding) {
            inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
1476
1477
        }

1478
1479
1480
        ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
        ggml_set_name(positions, "positions");
        ggml_set_input(positions);
1481

1482
        inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
1483

1484
        ggml_tensor * inpL = inp;
1485

1486
1487
1488
1489
1490
        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
            cb(inpL, "pre_ln", -1);
        }
1491

1492
1493
        std::vector<ggml_tensor *> embedding_stack;
        const auto & vision_feature_layer = hparams.vision_feature_layer;
1494

1495
1496
1497
1498
        // loop over layers
        for (int il = 0; il < max_feature_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
1499

1500
1501
1502
1503
1504
            // If this is an embedding feature layer, save the output.
            // NOTE: 0 index here refers to the input to the encoder.
            if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
                embedding_stack.push_back(cur);
            }
1505

1506
1507
1508
            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "layer_inp_normed", il);
1509

1510
1511
1512
1513
1514
1515
            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
1516

1517
1518
1519
1520
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
1521

1522
1523
1524
1525
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
1526

1527
1528
1529
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
1530

1531
1532
1533
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
1534

1535
1536
1537
1538
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
            }
1539

1540
1541
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
1542

1543
            inpL = cur; // inpL = residual, cur = hidden_states
1544

1545
            cb(cur, "ffn_inp", il);
1546

1547
1548
1549
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_inp_normed", il);
1550

1551
1552
1553
1554
1555
1556
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);
1557

1558
            cb(cur, "ffn_out", il);
1559

1560
1561
1562
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
1563

1564
            inpL = cur;
1565
        }
1566

1567
1568
1569
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
1570
        }
1571

1572
        ggml_tensor * embeddings = inpL;
1573

1574
1575
1576
1577
1578
1579
        // process vision feature layers (used by granite)
        {
            // final layer is a vision feature layer
            if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
                embedding_stack.push_back(inpL);
            }
1580

1581
1582
1583
1584
1585
1586
1587
1588
            // If feature layers are explicitly set, stack them (if we have multiple)
            if (!embedding_stack.empty()) {
                embeddings = embedding_stack[0];
                for (size_t i = 1; i < embedding_stack.size(); i++) {
                    embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
                }
            }
        }
1589

1590
        // llava projector (also used by granite)
1591
        if (ctx->model.hparams.has_llava_projector) {
1592
            embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
1593

1594
1595
1596
            ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
            ggml_set_name(patches, "patches");
            ggml_set_input(patches);
1597

1598
1599
1600
            // shape [1, 576, 1024]
            // ne is whcn, ne = [1024, 576, 1, 1]
            embeddings = ggml_get_rows(ctx0, embeddings, patches);
1601

1602
            // print_tensor_info(embeddings, "embeddings");
1603

1604
            // llava projector
1605
            if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
1606
1607
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
1608

1609
1610
1611
1612
1613
1614
                embeddings = ggml_gelu(ctx0, embeddings);
                if (model.mm_2_w) {
                    embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
                    embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
                }
            }
1615
            else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
                embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
                // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
                // First LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
                                    model.mm_1_b);

                // GELU activation
                embeddings = ggml_gelu(ctx0, embeddings);

                // Second linear layer
                embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
                embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);

                // Second LayerNorm
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
                                    model.mm_4_b);
            }
1636
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
                // MobileVLM projector
                int n_patch = 24;
                ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
                mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
                mlp_1 = ggml_gelu(ctx0, mlp_1);
                ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
                mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
                // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]

                // block 1
                ggml_tensor * block_1 = nullptr;
                {
                    // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1650
1651
                    mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
                    mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
                    // stride = 1, padding = 1, bias is nullptr
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);

                    // layer norm
                    // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));

                    // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);
                    // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));

                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);

                    // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
                    // residual
                    block_1 = ggml_add(ctx0, mlp_3, block_1);
                }
1697

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
                // block_2
                {
                    // stride = 2
                    block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);

                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // layer norm
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
                    // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
                    // hardswish
                    ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);

                    // not sure the parameters is right for globalAvgPooling
                    block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
                    // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    // pointwise conv
                    block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
                    block_1 = ggml_relu(ctx0, block_1);
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
                    block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
                    block_1 = ggml_hardsigmoid(ctx0, block_1);

                    // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
                    block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
                    block_1 = ggml_mul(ctx0, block_1_hw, block_1);

                    int w = block_1->ne[0], h = block_1->ne[1];
                    block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
                    block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
                    // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
                    block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
                    block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);


                    // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
                    block_1 = ggml_norm(ctx0, block_1, eps);
                    block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
                    block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
                    // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
                }
                embeddings = block_1;
            }
1746
            else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
1747
1748
1749
1750
1751
1752
1753
1754
1755
            {
                int n_patch = 24;
                ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
                mlp_0 = ggml_gelu(ctx0, mlp_0);
                ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
                mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
                // mlp_2 ne = [2048, 576, 1, 1]
                // // AVG Pool Layer 2*2, strides = 2
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1756
                mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
1757
                // mlp_2 ne = [576, 2048, 1, 1]
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1758
                mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
                // mlp_2 ne [24, 24, 2048, 1]
                mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
                // weight ne = [3, 3, 2048, 1]
                ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
                peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
                mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
                peg_0 = ggml_add(ctx0, peg_0, mlp_2);
                peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
                embeddings = peg_0;
            }
            else {
                GGML_ABORT("fatal error");
            }
        }
1774

1775
        // glm projector
1776
        else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
1777
            size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1778
1779
            embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
            embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
            embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
            embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
            embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
            embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
            // GLU
            {
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
                embeddings = ggml_norm(ctx0, embeddings, eps);
                embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
                embeddings = ggml_gelu_inplace(ctx0, embeddings);
                ggml_tensor * x = embeddings;
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
                x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
1793
                embeddings = ggml_swiglu_split(ctx0, embeddings, x);
1794
1795
1796
1797
1798
1799
                embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
            }
            // arrangement of BOI/EOI token embeddings
            // note: these embeddings are not present in text model, hence we cannot process them as text tokens
            // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
1800
1801
                embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
                embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
1802
1803
            }
        }
1804

1805
1806
1807
        else {
            GGML_ABORT("llava: unknown projector type");
        }
1808

1809
1810
        // build the graph
        ggml_build_forward_expand(gf, embeddings);
1811

1812
        return gf;
1813
    }
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
    // whisper encoder with custom projector
    ggml_cgraph * build_whisper_enc() {
        const int n_frames = img.nx;
        const int n_pos    = n_frames / 2;
        GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);

        ggml_tensor * inp = build_inp_raw(1);

        // conv1d block
        {
            // convolution + gelu
            ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_1_b);

            cur = ggml_gelu_erf(ctx0, cur);

            cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
            cur = ggml_add(ctx0, cur, model.conv1d_2_b);

            cur = ggml_gelu_erf(ctx0, cur);
            // transpose
            inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
            cb(inp, "after_conv1d", -1);
        }

        // sanity check (only check one layer, but it should be the same for all)
        GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
        GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
        GGML_ASSERT(model.layers[0].q_b);
        GGML_ASSERT(model.layers[0].v_b);
        GGML_ASSERT(!model.layers[0].k_b); // no bias for k
        GGML_ASSERT(model.post_ln_w && model.post_ln_b);

        ggml_tensor * pos_embd_selected = ggml_view_2d(
            ctx0, model.position_embeddings,
            model.position_embeddings->ne[0], n_pos,
            model.position_embeddings->nb[1], 0
        );
        ggml_tensor * cur = build_vit(
                                inp, n_pos,
                                NORM_TYPE_NORMAL,
                                hparams.ffn_op,
                                pos_embd_selected,
                                nullptr);

        cb(cur, "after_transformer", -1);

        if (model.audio_has_stack_frames()) {
            // StackAudioFrames
            // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
            int64_t stride = n_embd * hparams.proj_stack_factor;
            int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
            int64_t pad = padded_len - ggml_nelements(cur);
            if (pad > 0) {
                cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
                cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
            }
            cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
                                ggml_row_size(cur->type, stride), 0);
            cb(cur, "after_stacked", -1);
        }

        if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
            // UltravoxProjector
            // pre-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);

            // ffn in
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);

            // swiglu
            // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
            cur = ggml_swiglu_swapped(ctx0, cur);

            // mid-norm
            cur = ggml_rms_norm(ctx0, cur, 1e-6);
            cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);

            // ffn out
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
            cur = ggml_add(ctx0, cur, model.mm_fc_b);

        } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
            // projector
            cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
            cur = ggml_gelu_erf(ctx0, cur);
            cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);

        } else {
            GGML_ABORT("%s: unknown projector type", __func__);
        }

        cb(cur, "projected", -1);

        ggml_build_forward_expand(gf, cur);

        return gf;
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
    // cogvlm vision encoder
    ggml_cgraph * build_cogvlm() {
        GGML_ASSERT(model.class_embedding != nullptr);
        GGML_ASSERT(model.position_embeddings != nullptr);

        const int n_pos = n_patches + 1; // +1 for [CLS]

        // build input and concatenate class embedding
        ggml_tensor * inp = build_inp();
        inp = ggml_concat(ctx0, inp, model.class_embedding, 1);

        inp = ggml_add(ctx0, inp, model.position_embeddings);
        cb(inp, "inp_pos", -1);

        ggml_tensor * inpL = inp;

        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL;

            cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);

            cur = ggml_add(ctx0, cur, layer.qkv_b);

            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
                cur->nb[1], 0);
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
                cur->nb[1], n_embd * sizeof(float));
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
                cur->nb[1], 2 * n_embd * sizeof(float));

            cb(Qcur, "Qcur", il);
            cb(Kcur, "Kcur", il);
            cb(Vcur, "Vcur", il);

            cur = build_attn(layer.o_w, layer.o_b,
                Qcur, Kcur, Vcur, nullptr, kq_scale, il);
            cb(cur, "attn_out", il);

            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "attn_post_norm", il);

            cur = ggml_add(ctx0, cur, inpL);
            inpL = cur;

            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                hparams.ffn_op, il);

            cb(cur, "ffn_out", il);

            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
            cb(cur, "ffn_post_norm", il);

            cur = ggml_add(ctx0, cur, inpL);
            cb(cur, "layer_out", il);
            inpL = cur;

        }

        // remove CLS token (like build_llama4 does)
        ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
            n_embd, n_patches,
            ggml_row_size(inpL->type, n_embd), 0);

        // Multiply with mm_model_proj
        cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);

        // Apply layernorm, weight, bias
        cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);

        // Apply GELU
        cur = ggml_gelu_inplace(ctx0, cur);

        // Branch 1: multiply with mm_h_to_4h_w
        ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);

        // Branch 2: multiply with mm_gate_w
        ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);

        // Apply silu
        gate = ggml_swiglu_split(ctx0, gate, h_to_4h);

        // Apply mm_4h_to_h_w
        cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);

        // Concatenate with boi and eoi
        cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
        cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);

        // build the graph
        ggml_build_forward_expand(gf, cur);

        return gf;
    }

2016
2017
2018
2019
2020
private:
    //
    // utility functions
    //

2021
2022
2023
2024
2025
2026
2027
2028
2029
    void cb(ggml_tensor * cur0, const char * name, int il) const {
        if (ctx->debug_graph) {
            ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
            std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
            ggml_set_name(cur, cur_name.c_str());
            ggml_set_output(cur);
            ggml_build_forward_expand(gf, cur);
            ctx->debug_print_tensors.push_back(cur);
        }
2030
2031
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2032
2033
2034
2035
2036
    // siglip2 naflex
    ggml_tensor * resize_position_embeddings() {
        ggml_tensor * pos_embd = model.position_embeddings;
        const int height       = img.ny / patch_size;
        const int width        = img.nx / patch_size;
2037
        const uint32_t mode    = GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ANTIALIAS;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
        const int n_per_side   = (int)std::sqrt(pos_embd->ne[1]);

        GGML_ASSERT(pos_embd);

        if (height == n_per_side && width == n_per_side) {
            return pos_embd;
        }

        pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side);  // -> (n_embd, n_per_side, n_per_side)
        pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3);                         // -> (n_per_side, n_per_side, n_embd)
        pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
        pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3);                         // -> (n_embd, width, height)
        pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);             // -> (n_embd, width * height)

        return pos_embd;
    }

2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
    // build vision transformer (ViT) cgraph
    // this function should cover most of the models
    // if your model has specific features, you should probably duplicate this function
    ggml_tensor * build_vit(
                ggml_tensor * inp,
                int64_t n_pos,
                norm_type norm_t,
                ffn_op_type ffn_t,
                ggml_tensor * learned_pos_embd,
                std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
            ) {
        if (learned_pos_embd) {
            inp = ggml_add(ctx0, inp, learned_pos_embd);
            cb(inp, "pos_embed", -1);
        }

        ggml_tensor * inpL = inp;

        // pre-layernorm
        if (model.pre_ln_w) {
            inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
            cb(inpL, "pre_ln", -1);
        }

        // loop over layers
        for (int il = 0; il < n_layer; il++) {
            auto & layer = model.layers[il];
            ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states

            // layernorm1
            cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
            cb(cur, "layer_inp_normed", il);

            // self-attention
            {
                ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
                if (layer.q_b) {
                    Qcur = ggml_add(ctx0, Qcur, layer.q_b);
                }
2094

2095
2096
2097
2098
                ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
                if (layer.k_b) {
                    Kcur = ggml_add(ctx0, Kcur, layer.k_b);
                }
2099

2100
2101
2102
2103
                ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
                if (layer.v_b) {
                    Vcur = ggml_add(ctx0, Vcur, layer.v_b);
                }
2104

2105
2106
2107
2108
                if (layer.q_norm) {
                    Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
                    cb(Qcur, "Qcur_norm", il);
                }
2109

2110
2111
2112
2113
                if (layer.k_norm) {
                    Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
                    cb(Kcur, "Kcur_norm", il);
                }
2114

2115
2116
2117
                Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
                Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
                Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
2118

2119
2120
2121
                cb(Qcur, "Qcur", il);
                cb(Kcur, "Kcur", il);
                cb(Vcur, "Vcur", il);
2122

2123
2124
2125
2126
2127
2128
                if (add_pos) {
                    Qcur = add_pos(Qcur, layer);
                    Kcur = add_pos(Kcur, layer);
                    cb(Qcur, "Qcur_pos", il);
                    cb(Kcur, "Kcur_pos", il);
                }
2129

2130
2131
2132
                cur = build_attn(layer.o_w, layer.o_b,
                    Qcur, Kcur, Vcur, nullptr, kq_scale, il);
                cb(cur, "attn_out", il);
2133
            }
2134

2135
2136
2137
            if (layer.ls_1_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_1_w);
                cb(cur, "attn_out_scaled", il);
2138
            }
2139

2140
2141
            // re-add the layer input, e.g., residual
            cur = ggml_add(ctx0, cur, inpL);
2142

2143
            inpL = cur; // inpL = residual, cur = hidden_states
2144

2145
            cb(cur, "ffn_inp", il);
2146

2147
2148
2149
            // layernorm2
            cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
            cb(cur, "ffn_inp_normed", il);
2150

2151
2152
2153
2154
2155
2156
            // ffn
            cur = build_ffn(cur,
                layer.ff_up_w, layer.ff_up_b,
                layer.ff_gate_w, layer.ff_gate_b,
                layer.ff_down_w, layer.ff_down_b,
                ffn_t, il);
2157

2158
            cb(cur, "ffn_out", il);
2159

2160
2161
2162
2163
            if (layer.ls_2_w) {
                cur = ggml_mul(ctx0, cur, layer.ls_2_w);
                cb(cur, "ffn_out_scaled", il);
            }
2164

2165
2166
2167
            // residual 2
            cur = ggml_add(ctx0, inpL, cur);
            cb(cur, "layer_out", il);
2168

2169
            inpL = cur;
2170
2171
        }

2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
        if (ctx->model.audio_has_avgpool()) {
            ggml_tensor * cur = inpL;
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
            cur = ggml_transpose(ctx0, cur);
            cur = ggml_cont(ctx0, cur);
            inpL = cur;
        }

2182
2183
2184
        // post-layernorm
        if (model.post_ln_w) {
            inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
2185
        }
2186
2187
        return inpL;
    }
2188

2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
    // build the input after conv2d (inp_raw --> patches)
    // returns tensor with shape [n_embd, n_patches]
    ggml_tensor * build_inp() {
        ggml_tensor * inp_raw = build_inp_raw();
        ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
        inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
        inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
        if (model.patch_bias) {
            inp = ggml_add(ctx0, inp, model.patch_bias);
            cb(inp, "patch_bias", -1);
        }
        return inp;
    }
2202

2203
2204
    ggml_tensor * build_inp_raw(int channels = 3) {
        ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
2205
2206
2207
        ggml_set_name(inp_raw, "inp_raw");
        ggml_set_input(inp_raw);
        return inp_raw;
2208
2209
    }

2210
2211
2212
2213
2214
2215
2216
    ggml_tensor * build_norm(
            ggml_tensor * cur,
            ggml_tensor * mw,
            ggml_tensor * mb,
            norm_type type,
            float norm_eps,
            int il) const {
2217

2218
2219
2220
        cur = type == NORM_TYPE_RMS
            ? ggml_rms_norm(ctx0, cur, norm_eps)
            : ggml_norm(ctx0, cur, norm_eps);
2221

2222
2223
2224
        if (mw || mb) {
            cb(cur, "norm", il);
        }
2225

2226
2227
2228
2229
2230
        if (mw) {
            cur = ggml_mul(ctx0, cur, mw);
            if (mb) {
                cb(cur, "norm_w", il);
            }
2231
2232
        }

2233
2234
2235
        if (mb) {
            cur = ggml_add(ctx0, cur, mb);
        }
2236

2237
2238
        return cur;
    }
2239

2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
    ggml_tensor * build_ffn(
            ggml_tensor * cur,
            ggml_tensor * up,
            ggml_tensor * up_b,
            ggml_tensor * gate,
            ggml_tensor * gate_b,
            ggml_tensor * down,
            ggml_tensor * down_b,
            ffn_op_type type_op,
            int il) const {
2250

2251
2252
        ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
        cb(tmp, "ffn_up", il);
2253

2254
2255
2256
2257
        if (up_b) {
            tmp = ggml_add(ctx0, tmp, up_b);
            cb(tmp, "ffn_up_b", il);
        }
2258

2259
2260
2261
2262
2263
2264
2265
        if (gate) {
            cur = ggml_mul_mat(ctx0, gate, cur);
            cb(cur, "ffn_gate", il);

            if (gate_b) {
                cur = ggml_add(ctx0, cur, gate_b);
                cb(cur, "ffn_gate_b", il);
2266
            }
2267
2268
        } else {
            cur = tmp;
2269
2270
        }

2271
        // we only support parallel ffn for now
2272
2273
        switch (type_op) {
            case FFN_SILU:
2274
2275
2276
2277
                if (gate) {
                    cur = ggml_swiglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_swiglu", il);
                } else {
2278
2279
2280
2281
                    cur = ggml_silu(ctx0, cur);
                    cb(cur, "ffn_silu", il);
                } break;
            case FFN_GELU:
2282
2283
2284
2285
                if (gate) {
                    cur = ggml_geglu_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu", il);
                } else {
2286
2287
2288
                    cur = ggml_gelu(ctx0, cur);
                    cb(cur, "ffn_gelu", il);
                } break;
2289
2290
2291
2292
2293
2294
2295
2296
            case FFN_GELU_ERF:
                if (gate) {
                    cur = ggml_geglu_erf_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_erf", il);
                } else {
                    cur = ggml_gelu_erf(ctx0, cur);
                    cb(cur, "ffn_gelu_erf", il);
                } break;
2297
            case FFN_GELU_QUICK:
2298
2299
2300
2301
                if (gate) {
                    cur = ggml_geglu_quick_split(ctx0, cur, tmp);
                    cb(cur, "ffn_geglu_quick", il);
                } else {
2302
                    cur = ggml_gelu_quick(ctx0, cur);
2303
                    cb(cur, "ffn_gelu_quick", il);
2304
                } break;
2305
        }
2306
2307
2308

        if (down) {
            cur = ggml_mul_mat(ctx0, down, cur);
2309
        }
2310
2311
2312

        if (down_b) {
            cb(cur, "ffn_down", il);
2313
        }
2314
2315
2316

        if (down_b) {
            cur = ggml_add(ctx0, cur, down_b);
2317
        }
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344

        return cur;
    }

    ggml_tensor * build_attn(
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur,
            ggml_tensor * k_cur,
            ggml_tensor * v_cur,
            ggml_tensor * kq_mask,
            float kq_scale,
            int il) const {
        // these nodes are added to the graph together so that they are not reordered
        // by doing so, the number of splits in the graph is reduced
        ggml_build_forward_expand(gf, q_cur);
        ggml_build_forward_expand(gf, k_cur);
        ggml_build_forward_expand(gf, v_cur);

        ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
        //cb(q, "q", il);

        ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
        //cb(k, "k", il);

        ggml_tensor * cur;

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
        if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
            ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);

            k = ggml_cast(ctx0, k, GGML_TYPE_F16);
            v = ggml_cast(ctx0, v, GGML_TYPE_F16);

            cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
            ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);

            cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);

        } else {
            ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
            v = ggml_cont(ctx0, v);

2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
            const auto n_tokens = q->ne[1];
            const auto n_head   = q->ne[2];

            ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
            // F32 may not needed for vision encoders?
            // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);

            kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);

            ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
            cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
            cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
2372
2373
        }

2374
        cb(cur, "kqv_out", il);
2375

2376
2377
        if (wo) {
            cur = ggml_mul_mat(ctx0, wo, cur);
2378
        }
2379

2380
2381
        if (wo_b) {
            cur = ggml_add(ctx0, cur, wo_b);
2382
        }
2383
2384

        return cur;
2385
    }
2386

2387
2388
2389
2390
2391
2392
    // implementation of the 2D RoPE without adding a new op in ggml
    // this is not efficient (use double the memory), but works on all backends
    // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
    static ggml_tensor * build_rope_2d(
        ggml_context * ctx0,
        ggml_tensor * cur,
2393
2394
2395
2396
        ggml_tensor * pos_a, // first half
        ggml_tensor * pos_b, // second half
        const float freq_base,
        const bool interleave_freq
2397
2398
2399
2400
    ) {
        const int64_t n_dim  = cur->ne[0];
        const int64_t n_head = cur->ne[1];
        const int64_t n_pos  = cur->ne[2];
2401

2402
2403
2404
2405
2406
2407
2408
2409
        // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
        // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
        // first half of cur will use 1e-0, 1e-2 (even)
        // second half of cur will use 1e-1, 1e-3 (odd)
        // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
        //  ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
        // then for the second half, we use freq_scale to shift the inv_freq
        //  ^ why? replace (2i) with (2i+1) in the above equation
2410
2411
2412
        const float freq_scale_odd = interleave_freq
                                    ? std::pow(freq_base, (float)-2/n_dim)
                                    : 1.0;
2413

2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
        // first half
        ggml_tensor * first;
        {
            first = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                0);
            first = ggml_rope_ext(
                ctx0,
                first,
2425
                pos_a,      // positions
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                1.0f, 0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        // second half
        ggml_tensor * second;
        {
            second = ggml_view_3d(ctx0, cur,
                n_dim/2, n_head, n_pos,
                ggml_row_size(cur->type, n_dim),
                ggml_row_size(cur->type, n_dim*n_head),
                n_dim/2 * ggml_element_size(cur));
            second = ggml_rope_ext(
                ctx0,
                second,
2444
                pos_b,      // positions
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
                nullptr,    // freq factors
                n_dim/2,    // n_dims
                0, 0, freq_base,
                freq_scale_odd,
                0.0f, 1.0f, 0.0f, 0.0f
            );
        }

        cur = ggml_concat(ctx0, first, second, 0);
        return cur;
2455
    }
2456

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
    // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
    // support dynamic resolution
    ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
        GGML_ASSERT(scale_factor > 1);

        const int n_embd = cur->ne[0];
        int width  = img.nx / patch_size;
        int height = img.ny / patch_size;

        // pad width and height to factor
        const int64_t pad_width  = CLIP_ALIGN(width,  scale_factor) - width;
        const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
        cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
        if (pad_width || pad_height) {
            cur     = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
            width  += pad_width;
            height += pad_height;
        }

        // unshuffle h
        cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        // unshuffle w
        cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
        cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);

        cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
        cb(cur, "pixel_shuffle", -1);

        return cur;
    }

2490
};
2491

2492
2493
2494
static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
    GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
    clip_graph graph(ctx, *imgs.entries[0]);
2495

2496
    ggml_cgraph * res;
2497

2498
    switch (ctx->proj_type()) {
2499
2500
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2501
        case PROJECTOR_TYPE_LFM2:
2502
            {
2503
                res = graph.build_siglip();
2504
2505
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2506
        case PROJECTOR_TYPE_LIGHTONOCR:
2507
            {
2508
                res = graph.build_pixtral();
2509
            } break;
2510
        case PROJECTOR_TYPE_QWEN2VL:
2511
2512
        case PROJECTOR_TYPE_QWEN25VL:
            {
2513
2514
                res = graph.build_qwen2vl();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2515
2516
2517
2518
        case PROJECTOR_TYPE_QWEN3VL:
            {
                res = graph.build_qwen3vl();
            } break;
2519
2520
2521
2522
2523
2524
2525
        case PROJECTOR_TYPE_MINICPMV:
            {
                res = graph.build_minicpmv();
            } break;
        case PROJECTOR_TYPE_INTERNVL:
            {
                res = graph.build_internvl();
2526
            } break;
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
        case PROJECTOR_TYPE_LLAMA4:
            {
                res = graph.build_llama4();
            } break;
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_QWEN2A:
            {
                res = graph.build_whisper_enc();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2537
2538
2539
2540
        case PROJECTOR_TYPE_KIMIVL:
            {
                res = graph.build_kimivl();
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2541
2542
2543
2544
2545
2546
2547
2548
        case PROJECTOR_TYPE_JANUS_PRO:
            {
                res = graph.build_siglip();
            } break;
        case PROJECTOR_TYPE_COGVLM:
            {
                res = graph.build_cogvlm();
            } break;
2549
2550
        default:
            {
2551
                res = graph.build_llava();
2552
            } break;
2553
    }
2554
    return res;
2555
}
2556

2557
2558
2559
struct clip_model_loader {
    ggml_context_ptr ctx_meta;
    gguf_context_ptr ctx_gguf;
2560

2561
    std::string fname;
2562

2563
    size_t model_size = 0; // in bytes
2564

2565
2566
2567
2568
2569
    bool has_vision = false;
    bool has_audio  = false;

    // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
    clip_model_loader(const char * fname) : fname(fname) {
2570
2571
2572
2573
2574
2575
        struct ggml_context * meta = nullptr;

        struct gguf_init_params params = {
            /*.no_alloc = */ true,
            /*.ctx      = */ &meta,
        };
2576

2577
2578
2579
        ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
        if (!ctx_gguf.get()) {
            throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
2580
2581
        }

2582
        ctx_meta.reset(meta);
2583

2584
        const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
2585

2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
        // print gguf info
        {
            std::string name;
            get_string(KEY_NAME, name, false);
            std::string description;
            get_string(KEY_DESCRIPTION, description, false);
            LOG_INF("%s: model name:   %s\n",  __func__, name.c_str());
            LOG_INF("%s: description:  %s\n",  __func__, description.c_str());
            LOG_INF("%s: GGUF version: %d\n",  __func__, gguf_get_version(ctx_gguf.get()));
            LOG_INF("%s: alignment:    %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
            LOG_INF("%s: n_tensors:    %d\n",  __func__, n_tensors);
            LOG_INF("%s: n_kv:         %d\n",  __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
            LOG_INF("\n");
2599
2600
        }

2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
        // modalities
        {
            get_bool(KEY_HAS_VISION_ENC, has_vision, false);
            get_bool(KEY_HAS_AUDIO_ENC,  has_audio,  false);

            if (has_vision) {
                LOG_INF("%s: has vision encoder\n", __func__);
            }
            if (has_audio) {
                LOG_INF("%s: has audio encoder\n", __func__);
            }
        }

2614
2615
2616
2617
2618
2619
        // tensors
        {
            for (int i = 0; i < n_tensors; ++i) {
                const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
                const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
                enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
2620
                ggml_tensor * cur = ggml_get_tensor(meta, name);
2621
2622
2623
2624
                size_t tensor_size = ggml_nbytes(cur);
                model_size += tensor_size;
                LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
                    __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
2625
2626
2627
2628
            }
        }
    }

2629
2630
    void load_hparams(clip_model & model, clip_modality modality) {
        auto & hparams = model.hparams;
2631
        std::string log_ffn_op; // for logging
2632

2633
2634
2635
2636
2637
2638
2639
2640
2641
        // sanity check
        if (modality == CLIP_MODALITY_VISION) {
            GGML_ASSERT(has_vision);
        } else if (modality == CLIP_MODALITY_AUDIO) {
            GGML_ASSERT(has_audio);
        }
        model.modality = modality;


2642
        // projector type
2643
        std::string proj_type;
2644
        {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2645
            // default key
2646
            get_string(KEY_PROJ_TYPE, proj_type, false);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2647
2648
2649
2650
2651

            // for models with mixed modalities
            if (proj_type.empty()) {
                if (modality == CLIP_MODALITY_VISION) {
                    get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2652
2653
2654
2655
                    if (proj_type.empty()) {
                        // Assume MLP if no projector type listed
                        proj_type = "mlp";
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2656
2657
2658
2659
2660
                } else if (modality == CLIP_MODALITY_AUDIO) {
                    get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
                } else {
                    GGML_ABORT("unknown modality");
                }
2661
            }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2662
2663
2664

            model.proj_type = clip_projector_type_from_string(proj_type);

2665
            if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
2666
                throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
2667
            }
2668

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2669
            // correct arch for multimodal models (legacy method)
2670
2671
2672
2673
2674
            if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
                model.proj_type = modality == CLIP_MODALITY_VISION
                                    ? PROJECTOR_TYPE_QWEN25VL
                                    : PROJECTOR_TYPE_QWEN2A;
            }
2675
2676
        }

2677
2678
2679
        const bool is_vision = model.modality == CLIP_MODALITY_VISION;
        const bool is_audio  = model.modality == CLIP_MODALITY_AUDIO;

2680
2681
        // other hparams
        {
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
            const char * prefix = is_vision ? "vision" : "audio";
            get_u32(string_format(KEY_N_EMBD,         prefix), hparams.n_embd);
            get_u32(string_format(KEY_N_HEAD,         prefix), hparams.n_head);
            get_u32(string_format(KEY_N_FF,           prefix), hparams.n_ff);
            get_u32(string_format(KEY_N_BLOCK,        prefix), hparams.n_layer);
            get_u32(string_format(KEY_PROJ_DIM,       prefix), hparams.projection_dim);
            get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);

            if (is_vision) {
                get_u32(KEY_IMAGE_SIZE, hparams.image_size);
                get_u32(KEY_PATCH_SIZE, hparams.patch_size);
                get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
                get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
                get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
                if (hparams.minicpmv_query_num == 0) {
                    // Fallback to hardcoded values for legacy models
                    if (hparams.minicpmv_version == 3) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 4) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 5) {
                        hparams.minicpmv_query_num = 64;
                    } else if (hparams.minicpmv_version == 6) {
                        hparams.minicpmv_query_num = 64;
                    } else {
                        hparams.minicpmv_query_num = 96;
                    }
                }
2710
2711
            } else if (is_audio) {
                get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2712
2713
2714
                // some hparams are unused, but still need to set to avoid issues
                hparams.image_size = 0;
                hparams.patch_size = 1;
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732

            } else {
                GGML_ASSERT(false && "unknown modality");
            }

            // for pinpoints, we need to convert it into a list of resolution candidates
            {
                std::vector<int> pinpoints;
                get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
                if (!pinpoints.empty()) {
                    for (size_t i = 0; i < pinpoints.size(); i += 2) {
                        hparams.image_res_candidates.push_back({
                            pinpoints[i],
                            pinpoints[i+1],
                        });
                    }
                }
            }
2733

2734
2735
2736
            // default warmup value
            hparams.warmup_image_size = hparams.image_size;

2737
2738
2739
2740
            hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
                                       || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                                       || model.proj_type == PROJECTOR_TYPE_LDP
                                       || model.proj_type == PROJECTOR_TYPE_LDPV2;
2741

2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
            {
                bool use_gelu = false;
                bool use_silu = false;
                get_bool(KEY_USE_GELU, use_gelu, false);
                get_bool(KEY_USE_SILU, use_silu, false);
                if (use_gelu && use_silu) {
                    throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
                }
                if (use_gelu) {
                    hparams.ffn_op = FFN_GELU;
                    log_ffn_op = "gelu";
                } else if (use_silu) {
                    hparams.ffn_op = FFN_SILU;
                    log_ffn_op = "silu";
                } else {
                    hparams.ffn_op = FFN_GELU_QUICK;
                    log_ffn_op = "gelu_quick";
                }
            }

2762
2763
2764
2765
2766
2767
2768
            {
                std::string mm_patch_merge_type;
                get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
                if (mm_patch_merge_type == "spatial_unpad") {
                    hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
                }
            }
2769

2770
            if (is_vision) {
2771
2772
2773
2774
2775
2776
2777
                int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
                int idx_std  = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
                GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
                GGML_ASSERT(idx_std >= 0  && "image_std not found");
                const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
                const float * std_data  = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
                for (int i = 0; i < 3; ++i) {
2778
2779
                    hparams.image_mean[i] = mean_data[i];
                    hparams.image_std[i]  = std_data[i];
2780
                }
2781
2782
            }

2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
            // Load the vision feature layer indices if they are explicitly provided;
            // if multiple vision feature layers are present, the values will be concatenated
            // to form the final visual features.
            // NOTE: gguf conversions should standardize the values of the vision feature layer to
            // be non-negative, since we use -1 to mark values as unset here.
            std::vector<int> vision_feature_layer;
            get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
            // convert std::vector to std::unordered_set
            for (auto & layer : vision_feature_layer) {
                hparams.vision_feature_layer.insert(layer);
            }
2794
2795

            // model-specific params
2796
            switch (model.proj_type) {
2797
2798
                case PROJECTOR_TYPE_MINICPMV:
                    {
2799
2800
                        if (hparams.minicpmv_version == 0) {
                            hparams.minicpmv_version = 2; // default to 2 if not set
2801
2802
                        }
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2803
2804
2805
2806
                case PROJECTOR_TYPE_INTERNVL:
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                    } break;
2807
                case PROJECTOR_TYPE_IDEFICS3:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2808
2809
2810
2811
                    {
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                        get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2812
                case PROJECTOR_TYPE_LFM2:
2813
                    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2814
2815
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                        // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
2816
2817
                        // config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
                        hparams.set_limit_image_tokens(64, 1024);
2818
2819
                    } break;
                case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2820
                case PROJECTOR_TYPE_LIGHTONOCR:
2821
                    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2822
2823
2824
                        // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
                        // TODO: verify the image_min_tokens
                        hparams.n_merge = 1; // the original pixtral does not use patch merging
2825
                        hparams.rope_theta = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2826
2827
2828
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
                        hparams.set_limit_image_tokens(8, 1024);
                        hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
2829
                    } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2830
2831
2832
                case PROJECTOR_TYPE_KIMIVL:
                    {
                        hparams.rope_theta = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2833
2834
2835
2836
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
                        // TODO: check kimivl preprocessor for exact values
                        hparams.set_limit_image_tokens(8, 1024);
                        hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2837
                    } break;
2838
2839
2840
2841
                case PROJECTOR_TYPE_GEMMA3:
                    {
                        // default value (used by all model sizes in gemma 3 family)
                        // number of patches for each **side** is reduced by a factor of 4
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2842
                        hparams.n_merge = 4;
2843
                        // test model (tinygemma3) has a different value, we optionally read it
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2844
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
2845
2846
                    } break;
                case PROJECTOR_TYPE_QWEN2VL:
2847
                case PROJECTOR_TYPE_QWEN25VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2848
                case PROJECTOR_TYPE_QWEN3VL:
2849
                    {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
                        hparams.n_merge = 2; // default value for Qwen 2 and 2.5
                        get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
                        get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
                        // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
                        hparams.set_limit_image_tokens(8, 4096);
                        hparams.set_warmup_n_tokens(46*46); // avoid OOM on warmup
                        const int warn_min_pixels = 1024 * hparams.n_merge * hparams.n_merge * hparams.patch_size * hparams.patch_size;
                        if (hparams.image_min_pixels < warn_min_pixels) {
                            LOG_WRN("%s: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks\n", __func__);
                            LOG_WRN("%s: if you encounter problems with accuracy, try adding --image-min-tokens 1024\n", __func__);
                            LOG_WRN("%s: more info: https://github.com/ggml-org/llama.cpp/issues/16842\n\n", __func__);
                        }
2862
                    } break;
2863
2864
2865
                case PROJECTOR_TYPE_LLAMA4:
                    {
                        hparams.rope_theta = 10000.0f;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2866
                        get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
                        set_llava_uhd_res_candidates(model, 3);
                    } break;
                case PROJECTOR_TYPE_ULTRAVOX:
                case PROJECTOR_TYPE_QWEN2A:
                case PROJECTOR_TYPE_VOXTRAL:
                    {
                        bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
                                             model.proj_type == PROJECTOR_TYPE_VOXTRAL;
                        get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
                        if (hparams.n_mel_bins != 128) {
                            throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
                        }
                        hparams.ffn_op = FFN_GELU_ERF;
                        log_ffn_op = "gelu_erf"; // temporary solution for logging
                    } break;
2882
2883
2884
                default:
                    break;
            }
2885

Daniel Hiltgen's avatar
Daniel Hiltgen committed
2886
2887
2888
2889
2890
2891
2892
2893
            // sanity check
            {
                if (hparams.image_max_pixels < hparams.image_min_pixels) {
                    throw std::runtime_error(string_format("%s: image_max_pixels (%d) is less than image_min_pixels (%d)\n", __func__, hparams.image_max_pixels, hparams.image_min_pixels));
                }
            }

            LOG_INF("%s: projector:          %s\n", __func__, proj_type.c_str());
2894
2895
2896
2897
            LOG_INF("%s: n_embd:             %d\n", __func__, hparams.n_embd);
            LOG_INF("%s: n_head:             %d\n", __func__, hparams.n_head);
            LOG_INF("%s: n_ff:               %d\n", __func__, hparams.n_ff);
            LOG_INF("%s: n_layer:            %d\n", __func__, hparams.n_layer);
2898
            LOG_INF("%s: ffn_op:             %s\n", __func__, log_ffn_op.c_str());
2899
            LOG_INF("%s: projection_dim:     %d\n", __func__, hparams.projection_dim);
2900
2901
2902
2903
2904
2905
            if (is_vision) {
                LOG_INF("\n--- vision hparams ---\n");
                LOG_INF("%s: image_size:         %d\n", __func__, hparams.image_size);
                LOG_INF("%s: patch_size:         %d\n", __func__, hparams.patch_size);
                LOG_INF("%s: has_llava_proj:     %d\n", __func__, hparams.has_llava_projector);
                LOG_INF("%s: minicpmv_version:   %d\n", __func__, hparams.minicpmv_version);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2906
                LOG_INF("%s: n_merge:            %d\n", __func__, hparams.n_merge);
2907
                LOG_INF("%s: n_wa_pattern:       %d\n", __func__, hparams.n_wa_pattern);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2908
2909
2910
2911
2912
2913
                if (hparams.image_min_pixels > 0) {
                    LOG_INF("%s: image_min_pixels:   %d%s\n", __func__, hparams.image_min_pixels, hparams.custom_image_min_tokens > 0 ? " (custom value)" : "");
                }
                if (hparams.image_max_pixels > 0) {
                    LOG_INF("%s: image_max_pixels:   %d%s\n", __func__, hparams.image_max_pixels, hparams.custom_image_max_tokens > 0 ? " (custom value)" : "");
                }
2914
2915
2916
2917
2918
            } else if (is_audio) {
                LOG_INF("\n--- audio hparams ---\n");
                LOG_INF("%s: n_mel_bins:         %d\n", __func__, hparams.n_mel_bins);
                LOG_INF("%s: proj_stack_factor:  %d\n", __func__, hparams.proj_stack_factor);
            }
2919
            LOG_INF("\n");
2920
2921
2922
2923
            LOG_INF("%s: model size:         %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
            LOG_INF("%s: metadata size:      %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
        }
    }
2924

2925
2926
2927
    void load_tensors(clip_ctx & ctx_clip) {
        auto & model = ctx_clip.model;
        auto & hparams = model.hparams;
2928
2929
        std::map<std::string, size_t> tensor_offset;
        std::vector<ggml_tensor *> tensors_to_load;
2930

2931
2932
2933
        // TODO @ngxson : support both audio and video in the future
        const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";

2934
2935
2936
2937
        // get offsets
        for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
            const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
            tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
2938
2939
        }

2940
2941
        // create data context
        struct ggml_init_params params = {
2942
            /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
2943
2944
2945
2946
2947
2948
            /*.mem_buffer =*/ NULL,
            /*.no_alloc =*/ true,
        };
        ctx_clip.ctx_data.reset(ggml_init(params));
        if (!ctx_clip.ctx_data) {
            throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
2949
2950
        }

2951
2952
        // helper function
        auto get_tensor = [&](const std::string & name, bool required = true) {
2953
            ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
2954
2955
2956
2957
2958
2959
            if (!cur && required) {
                throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
            }
            if (cur) {
                tensors_to_load.push_back(cur);
                // add tensors to context
2960
                ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
2961
2962
2963
2964
2965
                ggml_set_name(data_tensor, cur->name);
                cur = data_tensor;
            }
            return cur;
        };
2966

2967
        model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
2968

2969
2970
        model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
        model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"),   false);
2971

2972
2973
        model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
        model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"),   false);
2974

2975
2976
2977
        model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
        model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD,   false);
        model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
2978

2979
        model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
2980

2981
        // layers
2982
        model.layers.resize(hparams.n_layer);
2983
        for (int il = 0; il < hparams.n_layer; ++il) {
2984
            auto & layer = model.layers[il];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2985
2986
2987
            layer.k_w    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "weight"), false);
            layer.q_w    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "weight"), false);
            layer.v_w    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "weight"), false);
2988
            layer.o_w    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
2989
            layer.qkv_w  = get_tensor(string_format(TN_ATTN_QKV,    prefix, il, "weight"), false);
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
            layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
            layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
            layer.ln_1_w = get_tensor(string_format(TN_LN_1,        prefix, il, "weight"), false);
            layer.ln_2_w = get_tensor(string_format(TN_LN_2,        prefix, il, "weight"), false);
            layer.ls_1_w = get_tensor(string_format(TN_LS_1,        prefix, il, "weight"), false); // no bias
            layer.ls_2_w = get_tensor(string_format(TN_LS_2,        prefix, il, "weight"), false); // no bias

            layer.k_b    = get_tensor(string_format(TN_ATTN_K,      prefix, il, "bias"), false);
            layer.q_b    = get_tensor(string_format(TN_ATTN_Q,      prefix, il, "bias"), false);
            layer.v_b    = get_tensor(string_format(TN_ATTN_V,      prefix, il, "bias"), false);
            layer.o_b    = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3001
            layer.qkv_b  = get_tensor(string_format(TN_ATTN_QKV,    prefix, il, "bias"), false);
3002
3003
            layer.ln_1_b = get_tensor(string_format(TN_LN_1,        prefix, il, "bias"), false);
            layer.ln_2_b = get_tensor(string_format(TN_LN_2,        prefix, il, "bias"), false);
3004

3005
            // ffn
3006
3007
3008
3009
3010
3011
            layer.ff_up_w   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "weight"));
            layer.ff_up_b   = get_tensor(string_format(TN_FFN_UP,   prefix, il, "bias"),   false);
            layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
            layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"),   false);
            layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
            layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"),   false);
3012

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

            // qwen3vl deepstack layer
            layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
            layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
            layer.deepstack_fc1_w  = get_tensor(string_format(TN_DEEPSTACK_FC1,  il, "weight"), false);
            layer.deepstack_fc1_b  = get_tensor(string_format(TN_DEEPSTACK_FC1,  il, "bias"), false);
            layer.deepstack_fc2_w  = get_tensor(string_format(TN_DEEPSTACK_FC2,  il, "weight"), false);
            layer.deepstack_fc2_b  = get_tensor(string_format(TN_DEEPSTACK_FC2,  il, "bias"), false);
            if (layer.has_deepstack()) {
                model.n_deepstack_layers++;
            }

3025
3026
            // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
            // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
            bool is_ffn_swapped = (
                    // only old models need this fix
                    model.proj_type == PROJECTOR_TYPE_MLP
                    || model.proj_type == PROJECTOR_TYPE_MLP_NORM
                    || model.proj_type == PROJECTOR_TYPE_LDP
                    || model.proj_type == PROJECTOR_TYPE_LDPV2
                    || model.proj_type == PROJECTOR_TYPE_QWEN2VL
                    || model.proj_type == PROJECTOR_TYPE_QWEN25VL
                    || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
                    || model.proj_type == PROJECTOR_TYPE_GEMMA3
                    || model.proj_type == PROJECTOR_TYPE_IDEFICS3
                    || model.proj_type == PROJECTOR_TYPE_MINICPMV
                ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
            if (is_ffn_swapped) {
3041
3042
3043
3044
3045
3046
3047
3048
                // swap up and down weights
                ggml_tensor * tmp = layer.ff_up_w;
                layer.ff_up_w = layer.ff_down_w;
                layer.ff_down_w = tmp;
                // swap up and down biases
                tmp = layer.ff_up_b;
                layer.ff_up_b = layer.ff_down_b;
                layer.ff_down_b = tmp;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3049
3050
3051
                if (il == 0) {
                    LOG_WRN("%s: ffn up/down are swapped\n", __func__);
                }
3052
            }
3053
3054
        }

3055
        switch (model.proj_type) {
3056
3057
3058
3059
            case PROJECTOR_TYPE_MLP:
            case PROJECTOR_TYPE_MLP_NORM:
                {
                    // LLaVA projection
3060
3061
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
3062
                    // Yi-type llava
3063
3064
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
3065
                    // missing in Yi-type llava
3066
3067
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
3068
                    // Yi-type llava
3069
3070
3071
3072
3073
                    model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
                    model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
                    model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
                    model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
                    if (model.mm_3_w) {
3074
                        // TODO: this is a hack to support Yi-type llava
3075
                        model.proj_type = PROJECTOR_TYPE_MLP_NORM;
3076
                    }
3077
                    model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
3078
3079
3080
3081
                } break;
            case PROJECTOR_TYPE_LDP:
                {
                    // MobileVLM projection
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                    model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
                    model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
                    model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
                    model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
                    model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
                    model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
                    model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
                    model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
                    model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
                    model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
                    model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
                    model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
                    model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
                    model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
                    model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
                    model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
                    model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
                    model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
                    model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
                    model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
3106
3107
3108
3109
                } break;
            case PROJECTOR_TYPE_LDPV2:
                {
                    // MobilVLM_V2 projection
3110
3111
3112
3113
3114
3115
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
                    model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
                    model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
                    model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
3116
                } break;
3117
            case PROJECTOR_TYPE_MINICPMV:
3118
                {
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
                    // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
                    model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
                    model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
                    model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
                    model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
                    model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
                    model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
                    model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
                    model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
                    model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
                    model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
                    model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
                    model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
                    model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
                    model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
                    model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
                    model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
3138
3139
3140
                } break;
            case PROJECTOR_TYPE_GLM_EDGE:
                {
3141
3142
3143
3144
3145
3146
3147
3148
                    model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
                    model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
                    model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
                    model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
                    model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
                    model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3149
3150
                    model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
                    model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
3151
                } break;
3152
3153
            case PROJECTOR_TYPE_QWEN2VL:
            case PROJECTOR_TYPE_QWEN25VL:
3154
                {
3155
3156
3157
3158
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
3159
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3160
3161
3162
3163
3164
3165
3166
            case PROJECTOR_TYPE_QWEN3VL:
                {
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
3167
3168
            case PROJECTOR_TYPE_GEMMA3:
                {
3169
3170
                    model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
                    model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
3171
                } break;
3172
3173
            case PROJECTOR_TYPE_IDEFICS3:
                {
3174
                    model.projection = get_tensor(TN_MM_PROJECTOR);
3175
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
            case PROJECTOR_TYPE_LFM2:
            case PROJECTOR_TYPE_KIMIVL:
                {
                    model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
                    model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
                } break;
3186
3187
            case PROJECTOR_TYPE_PIXTRAL:
                {
3188
3189
3190
3191
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
3192
                    // [IMG_BREAK] token embedding
3193
                    model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
3194
                    // for mistral small 3.1
3195
3196
3197
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3198
3199
3200
3201
3202
3203
3204
3205
3206
            case PROJECTOR_TYPE_LIGHTONOCR:
                {
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
                    model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
                    model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
                    model.mm_input_norm_w   = get_tensor(TN_MM_INP_NORM,     false);
                    model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
                } break;
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
            case PROJECTOR_TYPE_ULTRAVOX:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
                    model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
                    model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
                } break;
            case PROJECTOR_TYPE_QWEN2A:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
                    model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
                } break;
            case PROJECTOR_TYPE_VOXTRAL:
                {
                    model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
                    model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
                    model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
                    model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
                    model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
3235
3236
3237
                } break;
            case PROJECTOR_TYPE_INTERNVL:
                {
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
                    model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
                    model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
                    model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
                } break;
            case PROJECTOR_TYPE_LLAMA4:
                {
                    model.mm_model_proj    = get_tensor(TN_MM_PROJECTOR);
                    model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
                    model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
3250
                } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
            case PROJECTOR_TYPE_COGVLM:
                {
                    model.mm_model_proj     = get_tensor(TN_MM_PROJECTOR);
                    model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
                    model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
                    model.mm_h_to_4h_w      = get_tensor(string_format(TN_MM_H_TO_4H,      "weight"));
                    model.mm_gate_w         = get_tensor(string_format(TN_MM_GATE,         "weight"));
                    model.mm_4h_to_h_w      = get_tensor(string_format(TN_MM_4H_TO_H,      "weight"));
                    model.mm_boi            = get_tensor(TN_TOK_BOI);
                    model.mm_eoi            = get_tensor(TN_TOK_EOI);
                } break;
            case PROJECTOR_TYPE_JANUS_PRO:
                {
                    model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
                    model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
                    model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
                    model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
                } break;
3269
3270
3271
            default:
                GGML_ASSERT(false && "unknown projector type");
        }
3272

3273
3274
3275
        // load data
        {
            std::vector<uint8_t> read_buf;
3276
3277

#ifdef _WIN32
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
            int wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, NULL, 0);
            if (!wlen) {
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
            wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t));
            wlen = MultiByteToWideChar(CP_UTF8, 0, fname.c_str(), -1, wbuf, wlen);
            if (!wlen) {
                free(wbuf);
                throw std::runtime_error(string_format("%s: failed to convert filename to wide string\n", __func__));
            }
3288
#if __GLIBCXX__
3289
3290
3291
            int fd = _wopen(wbuf, _O_RDONLY | _O_BINARY);
            __gnu_cxx::stdio_filebuf<char> buffer(fd, std::ios_base::in);
            std::istream fin(&buffer);
3292
#else // MSVC
3293
3294
            // unused in our current build
            auto fin = std::ifstream(wbuf, std::ios::binary);
3295
#endif
3296
            free(wbuf);
3297
#else
3298
            auto fin = std::ifstream(fname, std::ios::binary);
3299
3300
#endif
            if (!fin) {
3301
                throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
3302
            }
3303
3304
3305
3306
3307
3308

            // alloc memory and offload data
            ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
            ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
            ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
            for (auto & t : tensors_to_load) {
3309
                ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
                const size_t offset = tensor_offset[t->name];
                fin.seekg(offset, std::ios::beg);
                if (!fin) {
                    throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
                }
                size_t num_bytes = ggml_nbytes(cur);
                if (ggml_backend_buft_is_host(buft)) {
                    // for the CPU and Metal backend, we can read directly into the tensor
                    fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
                } else {
                    // read into a temporary buffer first, then copy to device memory
                    read_buf.resize(num_bytes);
                    fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
                    ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
                }
3325
3326
            }
#if defined(_WIN32) && defined(__GLIBCXX__)
3327
            close(fd);
3328
#else
3329
            fin.close();
3330
#endif
3331
3332
3333

            LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
        }
3334
3335
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
    struct support_info_op {
        ggml_tensor * op;

        // true if the op runs on the accelerated ctx_clip.backend
        bool is_accel = true;
    };

    struct support_info_graph {
        // whether the clip_ctx.backend supports flash attention
        bool fattn = true;
        ggml_tensor * fattn_op = nullptr; // for debugging

        std::vector<support_info_op> ops;
    };

    static void warmup(clip_ctx & ctx_clip) {
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
        // create a fake batch
        const auto & hparams = ctx_clip.model.hparams;
        clip_image_f32_batch batch;
        clip_image_f32_ptr img(clip_image_f32_init());
        if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
            img->nx = hparams.warmup_image_size;
            img->ny = hparams.warmup_image_size;
            LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
        } else {
            img->nx = hparams.warmup_audio_size;
            img->ny = hparams.n_mel_bins;
            LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
        }
        batch.entries.push_back(std::move(img));
        warmup(ctx_clip, batch);
    }

    static void warmup(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3370
3371
3372
3373
3374
        support_info_graph info;

        if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
            // try to enable flash attention to see if it's supported
            ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
3375
            info = alloc_compute_meta(ctx_clip, batch);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
            if (!info.fattn && info.fattn_op) {
                auto op = info.fattn_op;
                LOG_WRN("%s: *****************************************************************\n", __func__);
                LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
                LOG_WRN("%s: op params: \n", __func__);
                static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
                    LOG_WRN("%s:   %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
                            name, ggml_type_name(t->type),
                            t->ne[0], t->ne[1], t->ne[2], t->ne[3],
                            t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
                };
                print_shape(__func__, " dst", op);
                print_shape(__func__, "src0", op->src[0]);
                print_shape(__func__, "src1", op->src[1]);
                print_shape(__func__, "src2", op->src[2]);
                LOG_WRN("%s: please report this on github as an issue\n", __func__);
                LOG_WRN("%s: *****************************************************************\n", __func__);
                ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
3394
                alloc_compute_meta(ctx_clip, batch);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3395
3396
            }
        } else {
3397
            info = alloc_compute_meta(ctx_clip, batch);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3398
3399
3400
3401
3402
            if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
                LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
            }
        }

3403
3404
        ctx_clip.is_allocated = true; // mark buffers as allocated

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
        LOG_INF("%s: flash attention is %s\n", __func__,
            (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");

        // print ops that are not supported by the GPU backend (if there is one)
        if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
            std::vector<support_info_op> unsupported_ops;
            for (const auto & op : info.ops) {
                if (!op.is_accel) {
                    unsupported_ops.push_back(op);
                }
            }
            if (!unsupported_ops.empty()) {
                LOG_WRN("%s: *****************************************************************\n", __func__);
                LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
                LOG_WRN("%s:          the performance will be suboptimal                      \n", __func__);
                LOG_WRN("%s:          list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
                for (const auto & op : unsupported_ops) {
                    LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
                            ggml_op_name(op.op->op),
                            ggml_type_name(op.op->type),
                            op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
                }
                LOG_WRN("%s: flash attention is %s\n", __func__,
                    (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
                LOG_WRN("%s: please report this on github as an issue\n", __func__);
                LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
                LOG_WRN("%s: *****************************************************************\n", __func__);
            }
        }
    }

3436
    static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip, const clip_image_f32_batch & batch) {
3437
        ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
3438

3439
        ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
3440
        ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
3441

3442
3443
3444
3445
3446
3447
3448
3449
        for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
            ggml_backend_t backend = ctx_clip.backend_ptrs[i];
            ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
            size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
            if (size > 1) {
                LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
                        ggml_backend_buft_name(buft),
                        size / 1024.0 / 1024.0);
3450
            }
3451
        }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477

        const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
        const int n_nodes  = ggml_graph_n_nodes(gf);

        LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__,  n_splits, n_nodes);

        support_info_graph res {
            /*.fattn    = */ true,
            /*.fattn_op = */ nullptr,
            /*.ops      = */ {},
        };

        // check op support
        for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
            ggml_tensor * node = ggml_graph_node(gf, i);
            res.ops.push_back({node, true});
            if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
                res.ops.back().is_accel = false;
                if (node->op == GGML_OP_FLASH_ATTN_EXT) {
                    res.fattn    = false;
                    res.fattn_op = node;
                }
            }
        }

        return res;
3478
    }
3479

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3480
    void get_bool(const std::string & key, bool & output, bool required = true) const {
3481
3482
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3483
3484
3485
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3486
3487
3488
3489
            return;
        }
        output = gguf_get_val_bool(ctx_gguf.get(), i);
    }
3490

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3491
    void get_i32(const std::string & key, int & output, bool required = true) const {
3492
3493
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3494
3495
3496
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3497
3498
3499
3500
            return;
        }
        output = gguf_get_val_i32(ctx_gguf.get(), i);
    }
3501

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3502
    void get_u32(const std::string & key, int & output, bool required = true) const {
3503
3504
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3505
3506
3507
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3508
            return;
3509
        }
3510
3511
3512
        output = gguf_get_val_u32(ctx_gguf.get(), i);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3513
    void get_f32(const std::string & key, float & output, bool required = true) const {
3514
3515
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3516
3517
3518
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3519
3520
3521
3522
3523
            return;
        }
        output = gguf_get_val_f32(ctx_gguf.get(), i);
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3524
    void get_string(const std::string & key, std::string & output, bool required = true) const {
3525
3526
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3527
3528
3529
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3530
            return;
3531
        }
3532
3533
        output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
    }
3534

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3535
    void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
3536
3537
        const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
        if (i < 0) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3538
3539
3540
            if (required) {
                throw std::runtime_error("Key not found: " + key);
            }
3541
3542
3543
3544
3545
3546
3547
3548
3549
            return;
        }
        int n = gguf_get_arr_n(ctx_gguf.get(), i);
        output.resize(n);
        const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
        for (int i = 0; i < n; ++i) {
            output[i] = values[i];
        }
    }
3550

Daniel Hiltgen's avatar
Daniel Hiltgen committed
3551
    static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
        auto & hparams = model.hparams;
        for (int x = 1; x <= max_patches_per_side; x++) {
            for (int y = 1; y <= max_patches_per_side; y++) {
                if (x == 1 && y == 1) {
                    continue; // skip the first point
                }
                hparams.image_res_candidates.push_back(clip_image_size{
                    x*hparams.image_size,
                    y*hparams.image_size,
                });
            }
        }
    }
};
3566

3567
3568
3569
struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
    clip_ctx * ctx_vision = nullptr;
    clip_ctx * ctx_audio = nullptr;
3570
3571

    try {
3572
3573
3574
3575
3576
3577
        clip_model_loader loader(fname);

        if (loader.has_vision) {
            ctx_vision = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
            loader.load_tensors(*ctx_vision);
3578
3579
3580
            if (ctx_params.warmup) {
                loader.warmup(*ctx_vision);
            }
3581
3582
3583
3584
3585
3586
        }

        if (loader.has_audio) {
            ctx_audio = new clip_ctx(ctx_params);
            loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
            loader.load_tensors(*ctx_audio);
3587
3588
3589
            if (ctx_params.warmup) {
                loader.warmup(*ctx_audio);
            }
3590
3591
        }

3592
3593
    } catch (const std::exception & e) {
        LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3594
3595
3596
3597

        delete ctx_vision;
        delete ctx_audio;

3598
        return {nullptr, nullptr};
3599
3600
    }

3601
    return {ctx_vision, ctx_audio};
3602
3603
}

3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
struct clip_image_size * clip_image_size_init() {
    struct clip_image_size * load_image_size = new struct clip_image_size();
    load_image_size->width = 448;
    load_image_size->height = 448;
    return load_image_size;
}

struct clip_image_u8 * clip_image_u8_init() {
    return new clip_image_u8();
}

struct clip_image_f32 * clip_image_f32_init() {
    return new clip_image_f32();
}

3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
struct clip_image_f32_batch * clip_image_f32_batch_init() {
    return new clip_image_f32_batch();
}

unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
    if (nx) *nx = img->nx;
    if (ny) *ny = img->ny;
    return img->buf.data();
}

void clip_image_size_free(struct clip_image_size * load_image_size) {
    if (load_image_size == nullptr) {
        return;
    }
    delete load_image_size;
}
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3635
3636
3637
3638
void clip_image_u8_free(struct clip_image_u8  * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655

size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
    return batch->entries.size();
}

size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
    }
    return batch->entries[idx]->nx;
}

size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return 0;
3656
    }
3657
    return batch->entries[idx]->ny;
3658
}
3659
3660
3661
3662
3663

clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
    if (idx < 0 || idx >= (int)batch->entries.size()) {
        LOG_ERR("%s: invalid index %d\n", __func__, idx);
        return nullptr;
3664
    }
3665
    return batch->entries[idx].get();
3666
3667
}

3668
void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
3669
3670
3671
    img->nx = nx;
    img->ny = ny;
    img->buf.resize(3 * nx * ny);
3672
    memcpy(img->buf.data(), rgb_pixels, img->buf.size());
3673
3674
3675
}

// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
3676
3677
3678
3679
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
    dst.nx = src.nx;
    dst.ny = src.ny;
    dst.buf.resize(src.buf.size());
3680

3681
3682
    // TODO @ngxson : seems like this could be done more efficiently on cgraph
    for (size_t i = 0; i < src.buf.size(); ++i) {
3683
        int c = i % 3; // rgb
3684
        dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
3685
3686
3687
    }
}

3688
3689
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
struct img_tool {
    enum resize_algo {
        RESIZE_ALGO_BILINEAR,
        RESIZE_ALGO_BICUBIC,
        // RESIZE_ALGO_LANCZOS, // TODO
    };

    static void resize(
            const clip_image_u8 & src,
            clip_image_u8 & dst,
            const clip_image_size & target_resolution,
            resize_algo algo,
            bool add_padding = true, // TODO: define the behavior for add_padding = false
            std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
        dst.nx = target_resolution.width;
        dst.ny = target_resolution.height;
        dst.buf.resize(3 * dst.nx * dst.ny);

        if (dst.nx == src.nx && dst.ny == src.ny) {
            // no resize needed, simple copy
            dst.buf = src.buf;
            return;
        }

        if (!add_padding) {
            // direct resize
            switch (algo) {
                case RESIZE_ALGO_BILINEAR:
                    resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
                    break;
                case RESIZE_ALGO_BICUBIC:
                    resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
                    break;
                default:
                    throw std::runtime_error("Unsupported resize algorithm");
            }
        } else {
            // resize with padding
            clip_image_u8 resized_image;
            float scale_w = static_cast<float>(target_resolution.width) / src.nx;
            float scale_h = static_cast<float>(target_resolution.height) / src.ny;
            float scale = std::min(scale_w, scale_h);
            int new_width  = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
            int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);

            switch (algo) {
                case RESIZE_ALGO_BILINEAR:
                    resize_bilinear(src, resized_image, new_width, new_height);
                    break;
                case RESIZE_ALGO_BICUBIC:
                    resize_bicubic(src, resized_image, new_width, new_height);
                    break;
                default:
                    throw std::runtime_error("Unsupported resize algorithm");
            }

            // fill dst with pad_color
            fill(dst, pad_color);

            int offset_x = (target_resolution.width  - new_width)  / 2;
            int offset_y = (target_resolution.height - new_height) / 2;

            composite(dst, resized_image, offset_x, offset_y);
        }
    }

    static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
        dst.nx = w;
        dst.ny = h;
        dst.buf.resize(3 * w * h);

        for (int i = 0; i < h; ++i) {
            for (int j = 0; j < w; ++j) {
                int src_idx = 3 * ((y + i)*image.nx + (x + j));
                int dst_idx = 3 * (i*w + j);
                dst.buf[dst_idx]     = image.buf[src_idx];
                dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
            }
        }
    }

    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will be aligned to the nearest multiple of align_size
    // if H or W size is larger than longest_edge, it will be resized to longest_edge
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
        GGML_ASSERT(align_size > 0);
        if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
            return {0, 0};
        }

        float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
                               static_cast<float>(longest_edge) / inp_size.height);

        float target_width_f  = static_cast<float>(inp_size.width)  * scale;
        float target_height_f = static_cast<float>(inp_size.height) * scale;

        auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
        int aligned_width  = ceil_by_factor(target_width_f);
        int aligned_height = ceil_by_factor(target_height_f);

        return {aligned_width, aligned_height};
    }

    // calculate the size of the **resized** image, while preserving the aspect ratio
    // the calculated size will have min_pixels <= W*H <= max_pixels
    // this is referred as "smart_resize" in transformers code
    static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
        GGML_ASSERT(align_size > 0);
        const int width  = inp_size.width;
        const int height = inp_size.height;

3802
        auto round_by_factor = [f = align_size](float x) { return static_cast<int>(std::round(x / static_cast<float>(f))) * f; };
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3803
3804
3805
3806
        auto ceil_by_factor  = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
        auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };

        // always align up first
3807
3808
        int h_bar = std::max(align_size, round_by_factor(height));
        int w_bar = std::max(align_size, round_by_factor(width));
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851

        if (h_bar * w_bar > max_pixels) {
            const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
            h_bar = std::max(align_size, floor_by_factor(height / beta));
            w_bar = std::max(align_size, floor_by_factor(width  / beta));
        } else if (h_bar * w_bar < min_pixels) {
            const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
            h_bar = ceil_by_factor(height * beta);
            w_bar = ceil_by_factor(width * beta);
        }

        return {w_bar, h_bar};
    }

    // draw src image into dst image at offset (offset_x, offset_y)
    static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
        for (int y = 0; y < src.ny; ++y) {
            for (int x = 0; x < src.nx; ++x) {
                int dx = x + offset_x;
                int dy = y + offset_y;
                // skip pixels that would be out of bounds in the destination
                if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
                    continue;
                }
                size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
                size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
                dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
                dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
                dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
            }
        }
    }

    // fill the image with a solid color
    static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
        for (size_t i = 0; i < img.buf.size(); i += 3) {
            img.buf[i]     = color[0];
            img.buf[i + 1] = color[1];
            img.buf[i + 2] = color[2];
        }
    }

private:
3852
    // Bilinear resize function
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3853
    static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float x_ratio = static_cast<float>(src.nx - 1) / target_width;
        float y_ratio = static_cast<float>(src.ny - 1) / target_height;

        for (int y = 0; y < target_height; y++) {
            for (int x = 0; x < target_width; x++) {
                float px = x_ratio * x;
                float py = y_ratio * y;
                int x_floor = static_cast<int>(px);
                int y_floor = static_cast<int>(py);
                float x_lerp = px - x_floor;
                float y_lerp = py - y_floor;

                for (int c = 0; c < 3; c++) {
                    float top = lerp(
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    float bottom = lerp(
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
                        static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
                        x_lerp
                    );
                    dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
                }
            }
        }
    }
3886

3887
3888
    // Bicubic resize function
    // part of image will be cropped if the aspect ratio is different
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3889
    static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
3890
3891
3892
3893
3894
3895
3896
3897
        const int nx = img.nx;
        const int ny = img.ny;

        dst.nx = target_width;
        dst.ny = target_height;
        dst.buf.resize(3 * target_width * target_height);

        float Cc;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
3898
        float C[5] = {};
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
        float d0, d2, d3, a0, a1, a2, a3;
        int i, j, k, jj;
        int x, y;
        float dx, dy;
        float tx, ty;

        tx = (float)nx / (float)target_width;
        ty = (float)ny / (float)target_height;

        // Bicubic interpolation; adapted from ViT.cpp, inspired from :
        //    -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
        //    -> https://en.wikipedia.org/wiki/Bicubic_interpolation

        for (i = 0; i < target_height; i++) {
            for (j = 0; j < target_width; j++) {
                x = (int)(tx * j);
                y = (int)(ty * i);

                dx = tx * j - x;
                dy = ty * i - y;

                for (k = 0; k < 3; k++) {
                    for (jj = 0; jj <= 3; jj++) {
                        d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
                        a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];

                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;

                        C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;

                        d0 = C[0] - C[1];
                        d2 = C[2] - C[1];
                        d3 = C[3] - C[1];
                        a0 = C[1];
                        a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
                        a2 =  1.0 / 2 * d0 +      1.0 / 2 * d2;
                        a3 = -1.0 / 6 * d0 -      1.0 / 2 * d2 + 1.0 / 6 * d3;
                        Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;

                        const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
                        dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
                    }
3945
3946
3947
                }
            }
        }
3948
3949

        return true;
3950
3951
    }

3952
3953
3954
3955
3956
3957
3958
3959
3960
    static inline int clip(int x, int lower, int upper) {
        return std::max(lower, std::min(x, upper));
    }

    // Linear interpolation between two points
    static inline float lerp(float s, float e, float t) {
        return s + (e - s) * t;
    }
};
3961
3962

/**
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
 * implementation of LLaVA-UHD:
 *  - https://arxiv.org/pdf/2403.11703
 *  - https://github.com/thunlp/LLaVA-UHD
 *  - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
 *
 * overview:
 *   - an image always have a single overview (downscaled image)
 *   - an image can have 0 or multiple slices, depending on the image size
 *   - each slice can then be considered as a separate image
 *
 * for example:
3974
 *
3975
3976
3977
 * [overview] --> [slice 1] --> [slice 2]
 *           |                |
 *           +--> [slice 3] --> [slice 4]
3978
 */
3979
3980
3981
3982
3983
3984
struct llava_uhd {
    struct slice_coordinates {
        int x;
        int y;
        clip_image_size size;
    };
3985

3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
    struct slice_instructions {
        clip_image_size overview_size; // size of downscaled image
        clip_image_size refined_size;  // size of image right before slicing (must be multiple of slice size)
        clip_image_size grid_size;     // grid_size.width * grid_size.height = number of slices
        std::vector<slice_coordinates> slices;
        bool padding_refined = false;  // if true, refine image will be padded to the grid size (e.g. llava-1.6)
    };

    static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
        slice_instructions res;
        const int patch_size      = clip_get_patch_size(ctx);
        const int slice_size      = clip_get_image_size(ctx);
        const int original_width  = original_size.width;
        const int original_height = original_size.height;
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011

        const bool has_slices    = original_size.width > slice_size || original_size.height > slice_size;
        const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();

        if (!has_slices) {
            // skip slicing logic
            res.overview_size = clip_image_size{slice_size, slice_size};
            res.refined_size  = clip_image_size{0, 0};
            res.grid_size     = clip_image_size{0, 0};

            return res;
        }
4012
4013
4014
4015

        if (has_pinpoints) {
            // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
            auto refine_size = llava_uhd::select_best_resolution(
4016
4017
                original_size,
                ctx->model.hparams.image_res_candidates);
4018
4019
4020
4021
4022
            res.overview_size   = clip_image_size{slice_size, slice_size};
            res.refined_size    = refine_size;
            res.grid_size       = clip_image_size{0, 0};
            res.padding_refined = true;

4023
4024
4025
4026
4027
4028
            LOG_DBG("%s: using pinpoints for slicing\n", __func__);
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width,  res.refined_size.height);

4029
4030
4031
4032
4033
4034
4035
4036
            for (int y = 0; y < refine_size.height; y += slice_size) {
                for (int x = 0; x < refine_size.width; x += slice_size) {
                    slice_coordinates slice;
                    slice.x = x;
                    slice.y = y;
                    slice.size.width  = std::min(slice_size, refine_size.width  - x);
                    slice.size.height = std::min(slice_size, refine_size.height - y);
                    res.slices.push_back(slice);
4037
4038
4039
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
4040
4041
                }
            }
4042

4043
4044
4045
4046
            res.grid_size.height = refine_size.height / slice_size;
            res.grid_size.width  = refine_size.width  / slice_size;
            LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);

4047
            return res;
4048
4049
        }

4050
        // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
4051

4052
        auto best_size    = get_best_resize(original_size, slice_size, patch_size, !has_slices);
4053
        res.overview_size = best_size;
4054

4055
4056
4057
4058
4059
        {
            const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
            const float log_ratio = log((float)original_width / original_height);
            const float ratio = (float)original_width * original_height / (slice_size * slice_size);
            const int multiple = fmin(ceil(ratio), max_slice_nums);
4060

4061
4062
4063
4064
4065
            auto best_grid   = get_best_grid(max_slice_nums, multiple, log_ratio);
            auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
            res.grid_size    = best_grid;
            res.refined_size = refine_size;

4066
4067
4068
4069
4070
4071
            LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
                    __func__, original_width, original_height,
                    res.overview_size.width, res.overview_size.height,
                    res.refined_size.width, res.refined_size.height,
                    res.grid_size.width, res.grid_size.height);

4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
            int width  = refine_size.width;
            int height = refine_size.height;
            int grid_x = int(width  / best_grid.width);
            int grid_y = int(height / best_grid.height);
            for (int patches_y = 0,                    ic = 0;
                    patches_y < refine_size.height && ic < best_grid.height;
                    patches_y += grid_y,              ic += 1) {
                for (int patches_x = 0,                   jc = 0;
                        patches_x < refine_size.width && jc < best_grid.width;
                        patches_x += grid_x,             jc += 1) {
                    slice_coordinates slice;
                    slice.x = patches_x;
                    slice.y = patches_y;
                    slice.size.width  = grid_x;
                    slice.size.height = grid_y;
                    res.slices.push_back(slice);
4088
4089
4090
                    LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
                            __func__, (int)res.slices.size() - 1,
                            slice.x, slice.y, slice.size.width, slice.size.height);
4091
4092
4093
                }
            }
        }
4094

4095
4096
        return res;
    }
4097

4098
4099
    static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
        std::vector<clip_image_u8_ptr> output;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4100
        img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
4101

4102
4103
        // resize to overview size
        clip_image_u8_ptr resized_img(clip_image_u8_init());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4104
        img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
4105
4106
4107
4108
4109
4110
4111
4112
4113
        output.push_back(std::move(resized_img));
        if (inst.slices.empty()) {
            // no slices, just return the resized image
            return output;
        }

        // resize to refined size
        clip_image_u8_ptr refined_img(clip_image_u8_init());
        if (inst.padding_refined) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4114
            img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
4115
        } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4116
4117
4118
            // only algo bicubic preserves the ratio; old models rely on this behavior
            // TODO: do we need to support other algos here?
            img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
4119
        }
4120

4121
4122
4123
4124
4125
4126
4127
4128
        // create slices
        for (const auto & slice : inst.slices) {
            int x = slice.x;
            int y = slice.y;
            int w = slice.size.width;
            int h = slice.size.height;

            clip_image_u8_ptr img_slice(clip_image_u8_init());
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4129
            img_tool::crop(*refined_img, *img_slice, x, y, w, h);
4130
            output.push_back(std::move(img_slice));
4131
        }
4132
4133

        return output;
4134
4135
    }

4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
private:
    static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
            float r = static_cast<float>(width) / height;
            height  = static_cast<int>(scale_resolution / std::sqrt(r));
            width   = static_cast<int>(height * r);
        }
        clip_image_size res;
        res.width  = ensure_divide(width,  patch_size);
        res.height = ensure_divide(height, patch_size);
        return res;
    }

4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
    static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
        float scale_width  = static_cast<float>(target_max.width)  / orig.width;
        float scale_height = static_cast<float>(target_max.height) / orig.height;
        float scale = std::min(scale_width, scale_height);
        return clip_image_size{
            static_cast<int>(orig.width  * scale),
            static_cast<int>(orig.height * scale),
        };
    }

4161
4162
4163
    /**
     * Selects the best resolution from a list of possible resolutions based on the original size.
     *
4164
4165
4166
4167
4168
4169
4170
4171
     * For example, when given a list of resolutions:
     *  - 100x100
     *  - 200x100
     *  - 100x200
     *  - 200x200
     *
     * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
     *
4172
4173
4174
4175
4176
4177
     * @param original_size The original size of the image
     * @param possible_resolutions A list of possible resolutions
     * @return The best fit resolution
     */
    static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
        clip_image_size best_fit;
4178
        int min_wasted_area = std::numeric_limits<int>::max();
4179
        int max_effective_resolution = 0;
4180
4181
4182
4183
4184
4185
4186
4187
4188

        for (const clip_image_size & candidate : possible_resolutions) {
            auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
            int effective_resolution = std::min(
                target_size.width * target_size.height,
                original_size.width * original_size.height);
            int wasted_area = (candidate.width * candidate.height) - effective_resolution;

            if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
4189
                max_effective_resolution = effective_resolution;
4190
4191
                min_wasted_area = wasted_area;
                best_fit = candidate;
4192
            }
4193
4194

            LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
4195
        }
4196
4197

        return best_fit;
4198
4199
    }

4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
    static int ensure_divide(int length, int patch_size) {
        return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
    }

    static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
        int width  = original_size.width;
        int height = original_size.height;
        int grid_x = grid.width;
        int grid_y = grid.height;

        int refine_width  = ensure_divide(width, grid_x);
        int refine_height = ensure_divide(height, grid_y);

        clip_image_size grid_size;
        grid_size.width  = refine_width  / grid_x;
        grid_size.height = refine_height / grid_y;

        auto best_grid_size  = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
        int best_grid_width  = best_grid_size.width;
        int best_grid_height = best_grid_size.height;

        clip_image_size refine_size;
        refine_size.width  = best_grid_width  * grid_x;
        refine_size.height = best_grid_height * grid_y;
        return refine_size;
    }

    static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
        std::vector<int> candidate_split_grids_nums;
        for (int i : {multiple - 1, multiple, multiple + 1}) {
            if (i == 1 || i > max_slice_nums) {
                continue;
            }
            candidate_split_grids_nums.push_back(i);
        }

        std::vector<clip_image_size> candidate_grids;
        for (int split_grids_nums : candidate_split_grids_nums) {
            int m = 1;
            while (m <= split_grids_nums) {
                if (split_grids_nums % m == 0) {
                    candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
4242
                }
4243
                ++m;
4244
4245
            }
        }
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256

        clip_image_size best_grid{1, 1};
        float min_error = std::numeric_limits<float>::infinity();
        for (const auto& grid : candidate_grids) {
            float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
            if (error < min_error) {
                best_grid = grid;
                min_error = error;
            }
        }
        return best_grid;
4257
    }
4258
};
4259
4260
4261

// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
4262
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
4263
    clip_image_size original_size{img->nx, img->ny};
4264
    auto & params = ctx->model.hparams;
4265

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
    switch (ctx->proj_type()) {
        case PROJECTOR_TYPE_MINICPMV:
            {
                auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
                std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

                for (size_t i = 0; i < imgs.size(); ++i) {
                    // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
                }
4278

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4279
4280
4281
                res_imgs->grid_x = inst.grid_size.width;
                res_imgs->grid_y = inst.grid_size.height;
            } break;
4282

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
        case PROJECTOR_TYPE_QWEN3VL:
            {
                GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
                clip_image_u8 resized;
                const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
                    original_size,
                    params.patch_size * 2,
                    params.image_min_pixels,
                    params.image_max_pixels);
                img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
                // clip_image_save_to_bmp(resized, "preproc.bmp");
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                // clip_image_f32_ptr res(clip_image_f32_init());
                normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
                // res_imgs->data[0] = *res;
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
4302

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
        case PROJECTOR_TYPE_IDEFICS3:
            {
                // The refined size has two steps:
                // 1. Resize w/ aspect-ratio preserving such that the longer side is
                //      the preprocessor longest size
                // 2. Resize w/out preserving aspect ratio such that both sides are
                //      multiples of image_size (always rounding up)
                //
                // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
                const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
                    original_size, params.image_size, params.image_longest_edge);
                // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
                //         __func__, original_size.width, original_size.height,
                //         refined_size.width, refined_size.height);

                llava_uhd::slice_instructions instructions;
                instructions.overview_size = clip_image_size{params.image_size, params.image_size};
                instructions.refined_size = refined_size;
                instructions.grid_size = clip_image_size{
                    static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
                    static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
                };
                for (int y = 0; y < refined_size.height; y += params.image_size) {
                    for (int x = 0; x < refined_size.width; x += params.image_size) {
                        // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
                        instructions.slices.push_back(llava_uhd::slice_coordinates{
                            /* x    */x,
                            /* y    */y,
                            /* size */clip_image_size{
                                std::min(params.image_size, refined_size.width - x),
                                std::min(params.image_size, refined_size.height - y)
                            }
                        });
4336
                    }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
                }
                auto imgs = llava_uhd::slice_image(img, instructions);

                // cast and normalize to f32
                for (size_t i = 0; i < imgs.size(); ++i) {
                    // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
                }
4347

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4348
4349
4350
                res_imgs->grid_x = instructions.grid_size.width;
                res_imgs->grid_y = instructions.grid_size.height;
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4351

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
        case PROJECTOR_TYPE_GLM_EDGE:
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
            {
                clip_image_u8 resized_image;
                int sz = params.image_size;
                img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                //clip_image_save_to_bmp(resized_image, "resized.bmp");
                normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4364

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
        case PROJECTOR_TYPE_JANUS_PRO:
            {
                // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
                const std::array<uint8_t, 3> pad_color = {127, 127, 127};
                clip_image_u8 resized_image;
                int sz = params.image_size;
                img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4376

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
        case PROJECTOR_TYPE_PIXTRAL:
        case PROJECTOR_TYPE_LIGHTONOCR:
            {
                GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
                clip_image_u8 resized_image;
                // the original pixtral model doesn't have n_merge
                const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
                const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
                    original_size,
                    params.patch_size * cur_merge,
                    params.image_min_pixels,
                    params.image_max_pixels);
                img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
                clip_image_f32_ptr img_f32(clip_image_f32_init());
                normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(img_f32));
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4394

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
        case PROJECTOR_TYPE_LLAMA4:
            {
                GGML_ASSERT(!params.image_res_candidates.empty());
                auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
                std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

                for (size_t i = 0; i < imgs.size(); ++i) {
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
                }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4406

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4407
4408
4409
                res_imgs->grid_x = inst.grid_size.width;
                res_imgs->grid_y = inst.grid_size.height;
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4410

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            {
                GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
                const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
                    original_size,
                    params.patch_size * params.n_merge,
                    params.image_min_pixels,
                    params.image_max_pixels);
                const std::array<uint8_t, 3> pad_color = {122, 116, 104};

                clip_image_u8 resized_img;
4423
4424
                const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
                img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4425
4426
4427
4428
                clip_image_f32_ptr res(clip_image_f32_init());
                normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
                res_imgs->entries.push_back(std::move(res));
            } break;
4429

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4430
4431
4432
4433
4434
4435
4436
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
            {
                // TODO @ngxson : refactor the code below to avoid duplicated logic
4437

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4438
4439
                // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
                // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
4440

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4441
                clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
4442

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4443
4444
4445
4446
4447
4448
4449
4450
                // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
                if (params.image_res_candidates.empty()) { // pad_to_square
                    // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
                    // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
                    const int longer_side = std::max(img->nx, img->ny);
                    temp->nx = longer_side;
                    temp->ny = longer_side;
                    temp->buf.resize(3 * longer_side * longer_side);
4451

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4452
4453
                    // background color in RGB from LLaVA (this is the mean rgb color * 255)
                    const std::array<uint8_t, 3> pad_color = {122, 116, 104};
4454

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4455
4456
                    // resize the image to the target_size
                    img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
4457

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4458
4459
4460
                    clip_image_f32_ptr res(clip_image_f32_init());
                    normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
                    res_imgs->entries.push_back(std::move(res));
4461

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
                } else {
                    // "spatial_unpad" with "anyres" processing for llava-1.6
                    auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
                    std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);

                    for (size_t i = 0; i < imgs.size(); ++i) {
                        // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
                        clip_image_f32_ptr res(clip_image_f32_init());
                        normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
                        res_imgs->entries.push_back(std::move(res));
                    }
                }
            } break;
4475

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4476
4477
4478
        default:
            LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
            return false;
4479
    }
4480

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4481
    return true;
4482
4483
4484
}

ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
4485
    return ctx->model.image_newline;
4486
4487
4488
}

void clip_free(clip_ctx * ctx) {
4489
4490
4491
    if (ctx == nullptr) {
        return;
    }
4492
4493
4494
    delete ctx;
}

4495
// deprecated
4496
size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
4497
4498
    const int32_t nx = ctx->model.hparams.image_size;
    const int32_t ny = ctx->model.hparams.image_size;
4499
    return clip_embd_nbytes_by_img(ctx, nx, ny);
4500
4501
}

4502
size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
4503
4504
4505
    clip_image_f32 img;
    img.nx = img_w;
    img.ny = img_h;
4506
    return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
4507
4508
}

4509
int32_t clip_get_image_size(const struct clip_ctx * ctx) {
4510
    return ctx->model.hparams.image_size;
4511
4512
}

4513
int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
4514
    return ctx->model.hparams.patch_size;
4515
4516
}

4517
int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
4518
    return ctx->model.hparams.n_embd;
4519
4520
4521
}

const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
4522
    return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
4523
4524
4525
}

int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
4526
    const auto & params = ctx->model.hparams;
4527
    const int n_total = clip_n_output_tokens(ctx, img);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4528
4529
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
        return img->nx / (params.patch_size * 2);
4530
4531
4532
4533
4534
    }
    return n_total;
}

int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
4535
    const auto & params = ctx->model.hparams;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4536
4537
    if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
        return img->ny / (params.patch_size * 2);
4538
4539
4540
4541
4542
    }
    return 1;
}

int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
4543
    const auto & params = ctx->model.hparams;
4544

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4545
4546
4547
    // for models with fixed size image, the input image is already pre-processed and resized to square
    int patch_size = params.patch_size;
    int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
4548

4549
4550
4551
4552
4553
    projector_type proj = ctx->proj_type();

    switch (proj) {
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4554
        case PROJECTOR_TYPE_JANUS_PRO:
4555
4556
4557
4558
4559
4560
4561
            {
                // do nothing
            } break;
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
        case PROJECTOR_TYPE_GLM_EDGE:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4562
                n_patches /= 4;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4563
                if (ctx->model.mm_boi) {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4564
                    n_patches += 2; // for BOI and EOI token embeddings
4565
4566
4567
4568
                }
            } break;
        case PROJECTOR_TYPE_MINICPMV:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4569
4570
4571
                // Use actual config value if available, otherwise fall back to hardcoded values
                if (params.minicpmv_query_num > 0) {
                    n_patches = params.minicpmv_query_num;
4572
                } else {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
                    // Fallback to hardcoded values for legacy models
                    if (params.minicpmv_version == 2) {
                        n_patches = 96;
                    } else if (params.minicpmv_version == 3) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 4) {
                        n_patches = 64;
                    } else if (params.minicpmv_version == 5) {
                        // MiniCPM-V 4.0
                        n_patches = 64;
                    } else if (params.minicpmv_version == 6) {
                        // MiniCPM-V 4.5
                        n_patches = 64;
                    } else {
                        GGML_ABORT("Unknown minicpmv version");
                    }
4589
4590
4591
4592
                }
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4593
        case PROJECTOR_TYPE_QWEN3VL:
4594
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4595
                // dynamic size (2 conv, so double patch size)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4596
4597
                int x_patch = img->nx / (params.patch_size * 2);
                int y_patch = img->ny / (params.patch_size * 2);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4598
                n_patches = x_patch * y_patch;
4599
4600
4601
4602
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
        case PROJECTOR_TYPE_INTERNVL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4603
        case PROJECTOR_TYPE_LLAMA4:
4604
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4605
                // both X and Y are downscaled by the scale factor
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4606
                int scale_factor = ctx->model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4607
                n_patches /= (scale_factor * scale_factor);
4608
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4609
4610
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
4611
4612
            {
                // dynamic size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4613
                int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4614
4615
4616
                int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
                int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
                n_patches = x_patch * y_patch;
4617
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4618
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4619
        case PROJECTOR_TYPE_LIGHTONOCR:
4620
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4621
                // dynamic size
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4622
                int n_merge = ctx->model.hparams.n_merge;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4623
4624
                int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
                int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4625
4626
4627
4628
4629
                if (ctx->model.token_embd_img_break) {
                    n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
                } else {
                    n_patches = n_patches_y * n_patches_x;
                }
4630
4631
4632
4633
4634
            } break;
        case PROJECTOR_TYPE_VOXTRAL:
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_QWEN2A:
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4635
                n_patches = img->nx;
4636
4637
4638
4639

                const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
                if (ctx->model.audio_has_stack_frames()) {
                    GGML_ASSERT(proj_stack_factor > 0);
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4640
4641
                    const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
                    n_patches = n_len / proj_stack_factor;
4642
4643
4644
                }

                // whisper downscales input token by half after conv1d
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4645
                n_patches /= 2;
4646
4647
4648

                if (ctx->model.audio_has_avgpool()) {
                    // divide by 2 because of nn.AvgPool1d(2, stride=2)
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4649
                    n_patches /= 2;
4650
4651
                }
            } break;
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4652
4653
4654
4655
        case PROJECTOR_TYPE_COGVLM:
            {
                n_patches += 2; // for BOI and EOI token embeddings
            } break;
4656
4657
4658
4659
        default:
            GGML_ABORT("unsupported projector type");
    }

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4660
    return n_patches;
4661
4662
4663
}

bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
4664
4665
4666
4667
4668
    clip_image_f32_batch imgs;
    clip_image_f32_ptr img_copy(clip_image_f32_init());
    *img_copy = *img;
    imgs.entries.push_back(std::move(img_copy));

4669
4670
4671
    return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
}

4672
4673
4674
bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
    const clip_image_f32_batch & imgs = *imgs_c_ptr;
    int batch_size = imgs.entries.size();
4675

4676
4677
4678
4679
    // TODO @ngxson : implement batch size > 1 as a loop
    //                we don't need true batching support because the cgraph will gonna be big anyway
    if (batch_size != 1) {
        return false; // only support batch size of 1
4680
    }
4681

4682
4683
4684
4685
4686
    // if buffers are not allocated, we need to do a warmup run to allocate them
    if (!ctx->is_allocated) {
        clip_model_loader::warmup(*ctx, *imgs_c_ptr);
    }

4687
    // build the inference graph
4688
    ctx->debug_print_tensors.clear();
4689
    ggml_backend_sched_reset(ctx->sched.get());
4690
    ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
4691
    ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
4692
4693

    // set inputs
4694
    const auto & model   = ctx->model;
4695
4696
    const auto & hparams = model.hparams;

4697
4698
4699
    const int image_size_width  = imgs.entries[0]->nx;
    const int image_size_height = imgs.entries[0]->ny;

4700
4701
    const int patch_size    = hparams.patch_size;
    const int num_patches   = ((image_size_width / patch_size) * (image_size_height / patch_size));
4702
    const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
4703
4704
    const int pos_w = image_size_width  / patch_size;
    const int pos_h = image_size_height / patch_size;
4705

4706
4707
4708
    const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl

    auto get_inp_tensor = [&gf](const char * name) {
4709
        ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
        if (inp == nullptr) {
            GGML_ABORT("Failed to get tensor %s", name);
        }
        if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
            GGML_ABORT("Tensor %s is not an input tensor", name);
        }
        return inp;
    };

    auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_F32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
        ggml_tensor * cur = get_inp_tensor(name);
        GGML_ASSERT(cur->type == GGML_TYPE_I32);
        GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
        ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
    };

    // set input pixel values
4734
    if (!imgs.is_audio) {
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
        size_t nelem = 0;
        for (const auto & img : imgs.entries) {
            nelem += img->nx * img->ny * 3;
        }
        std::vector<float> inp_raw(nelem);

        // layout of data (note: the channel dim is unrolled to better visualize the layout):
        //
        // ┌──W──┐
        // │     H │  channel = R
        // ├─────┤ │
        // │     H │  channel = G
        // ├─────┤ │
        // │     H │  channel = B
        // └─────┘ │
        //   ──────┘ x B
4751

4752
4753
4754
        for (size_t i = 0; i < imgs.entries.size(); i++) {
            const int nx = imgs.entries[i]->nx;
            const int ny = imgs.entries[i]->ny;
4755
4756
4757
            const int n = nx * ny;

            for (int b = 0; b < batch_size; b++) {
4758
4759
4760
4761
4762
4763
4764
4765
                float * batch_entry = inp_raw.data() + b * (3*n);
                for (int y = 0; y < ny; y++) {
                    for (int x = 0; x < nx; x++) {
                        size_t base_src = 3*(y * nx + x); // idx of the first channel
                        size_t base_dst =    y * nx + x;  // idx of the first channel
                        batch_entry[      base_dst] = imgs.entries[b]->buf[base_src    ];
                        batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
                        batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
4766
4767
4768
4769
                    }
                }
            }
        }
4770
        set_input_f32("inp_raw", inp_raw);
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780

    } else {
        // audio input
        GGML_ASSERT(imgs.entries.size() == 1);
        const auto & mel_inp = imgs.entries[0];
        const int n_step = mel_inp->nx;
        const int n_mel  = mel_inp->ny;
        std::vector<float> inp_raw(n_step * n_mel);
        std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
        set_input_f32("inp_raw", inp_raw);
4781
4782
    }

4783
    // set input per projector
4784
    switch (ctx->model.proj_type) {
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
        case PROJECTOR_TYPE_MINICPMV:
            {
                // inspired from siglip:
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
                //    -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
                std::vector<int32_t> positions(pos_h * pos_w);
                int bucket_coords_h[1024];
                int bucket_coords_w[1024];
                for (int i = 0; i < pos_h; i++){
                    bucket_coords_h[i] = std::floor(70.0*i/pos_h);
4795
                }
4796
4797
4798
4799
4800
4801
4802
4803
4804
                for (int i = 0; i < pos_w; i++){
                    bucket_coords_w[i] = std::floor(70.0*i/pos_w);
                }
                for (int i = 0, id = 0; i < pos_h; i++){
                    for (int j = 0; j < pos_w; j++){
                        positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
                    }
                }
                set_input_i32("positions", positions);
4805

Daniel Hiltgen's avatar
Daniel Hiltgen committed
4806
4807
4808
4809
4810
4811
4812
                // inputs for resampler projector
                // set the 2D positions (using float for sinusoidal embedding)
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<float> pos_data(n_pos);
                // dimension H
                for (int i = 0; i < n_pos; i++) {
                    pos_data[i] = static_cast<float>(i / n_patches_per_col);
4813
                }
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
                set_input_f32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < n_pos; i++) {
                    pos_data[i] = static_cast<float>(i % n_patches_per_col);
                }
                set_input_f32("pos_w", pos_data);
                // base frequency omega
                const float base_freq   = 10000.0f;
                const int   n_embd_proj = clip_n_mmproj_embd(ctx);
                std::vector<float> omega(n_embd_proj / 4);
                for (int i = 0; i < n_embd_proj / 4; ++i) {
                    omega[i] = 1.0f / std::pow(base_freq, static_cast<float>(i) / (n_embd_proj / 4));
                }
                set_input_f32("omega", omega);
4828
4829
            } break;
        case PROJECTOR_TYPE_QWEN2VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4830
        case PROJECTOR_TYPE_QWEN3VL:
4831
            {
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4832
                const int merge_ratio = hparams.n_merge;
4833
4834
                const int pw = image_size_width  / patch_size;
                const int ph = image_size_height / patch_size;
4835
                std::vector<int> positions(n_pos * 4);
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
                int ptr = 0;
                for (int y = 0; y < ph; y += merge_ratio) {
                    for (int x = 0; x < pw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                positions[                  ptr] = y + dy;
                                positions[    num_patches + ptr] = x + dx;
                                positions[2 * num_patches + ptr] = y + dy;
                                positions[3 * num_patches + ptr] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4850

4851
4852
4853
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_QWEN25VL:
4854
            {
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
                // pw * ph = number of tokens output by ViT after apply patch merger
                // ipw * ipw = number of vision token been processed inside ViT
                const int merge_ratio = 2;
                const int pw  = image_size_width  / patch_size / merge_ratio;
                const int ph  = image_size_height / patch_size / merge_ratio;
                const int ipw = image_size_width  / patch_size;
                const int iph = image_size_height / patch_size;

                std::vector<int> idx    (ph * pw);
                std::vector<int> inv_idx(ph * pw);

                if (use_window_attn) {
                    const int attn_window_size = 112;
                    const int grid_window = attn_window_size / patch_size / merge_ratio;
                    int dst = 0;
                    // [num_vision_tokens, num_vision_tokens] attention mask tensor
                    std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
                    int mask_row = 0;

                    for (int y = 0; y < ph; y += grid_window) {
                        for (int x = 0; x < pw; x += grid_window) {
                            const int win_h = std::min(grid_window, ph - y);
                            const int win_w = std::min(grid_window, pw - x);
                            const int dst_0 = dst;
                            // group all tokens belong to the same window togather (to a continue range)
                            for (int dy = 0; dy < win_h; dy++) {
                                for (int dx = 0; dx < win_w; dx++) {
                                    const int src = (y + dy) * pw + (x + dx);
                                    GGML_ASSERT(src < (int)idx.size());
                                    GGML_ASSERT(dst < (int)inv_idx.size());
                                    idx    [src] = dst;
                                    inv_idx[dst] = src;
                                    dst++;
                                }
                            }

                            for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
                                int row_offset = mask_row * (ipw * iph);
                                std::fill(
                                    mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
                                    mask.begin() + row_offset + (dst   * merge_ratio * merge_ratio),
                                    0.0);
                                mask_row++;
                            }
4899
4900
                        }
                    }
4901
4902
4903
4904
4905
4906
4907
4908

                    set_input_i32("window_idx",     idx);
                    set_input_i32("inv_window_idx", inv_idx);
                    set_input_f32("window_mask",    mask);
                } else {
                    for (int i = 0; i < ph * pw; i++) {
                        idx[i] = i;
                    }
4909
4910
                }

4911
                const int mpow = merge_ratio * merge_ratio;
4912
                std::vector<int> positions(n_pos * 4);
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930

                int ptr = 0;
                for (int y = 0; y < iph; y += merge_ratio) {
                    for (int x = 0; x < ipw; x += merge_ratio) {
                        for (int dy = 0; dy < 2; dy++) {
                            for (int dx = 0; dx < 2; dx++) {
                                auto remap = idx[ptr / mpow];
                                remap = (remap * mpow) + (ptr % mpow);

                                positions[                  remap] = y + dy;
                                positions[    num_patches + remap] = x + dx;
                                positions[2 * num_patches + remap] = y + dy;
                                positions[3 * num_patches + remap] = x + dx;
                                ptr++;
                            }
                        }
                    }
                }
4931

4932
4933
4934
                set_input_i32("positions", positions);
            } break;
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4935
        case PROJECTOR_TYPE_KIMIVL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4936
        case PROJECTOR_TYPE_LIGHTONOCR:
4937
4938
4939
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
4940
                std::vector<int> pos_data(n_pos);
4941
                // dimension H
4942
                for (int i = 0; i < n_pos; i++) {
4943
4944
4945
4946
                    pos_data[i] = i / n_patches_per_col;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
4947
                for (int i = 0; i < n_pos; i++) {
4948
4949
4950
4951
4952
4953
4954
                    pos_data[i] = i % n_patches_per_col;
                }
                set_input_i32("pos_w", pos_data);
            } break;
        case PROJECTOR_TYPE_GLM_EDGE:
        {
            // llava and other models
4955
4956
            std::vector<int32_t> positions(n_pos);
            for (int i = 0; i < n_pos; i++) {
4957
                positions[i] = i;
4958
            }
4959
4960
4961
4962
4963
4964
4965
4966
            set_input_i32("positions", positions);
        } break;
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_MLP_NORM:
        case PROJECTOR_TYPE_LDP:
        case PROJECTOR_TYPE_LDPV2:
            {
                // llava and other models
4967
4968
                std::vector<int32_t> positions(n_pos);
                for (int i = 0; i < n_pos; i++) {
4969
4970
4971
                    positions[i] = i;
                }
                set_input_i32("positions", positions);
4972

4973
4974
4975
                // The patches vector is used to get rows to index into the embeds with;
                // we should skip dim 0 only if we have CLS to avoid going out of bounds
                // when retrieving the rows.
4976
                int patch_offset = model.class_embedding ? 1 : 0;
4977
                std::vector<int32_t> patches(num_patches);
4978
                for (int i = 0; i < num_patches; i++) {
4979
                    patches[i] = i + patch_offset;
4980
                }
4981
4982
4983
4984
                set_input_i32("patches", patches);
            } break;
        case PROJECTOR_TYPE_GEMMA3:
        case PROJECTOR_TYPE_IDEFICS3:
4985
        case PROJECTOR_TYPE_INTERNVL:
4986
4987
        case PROJECTOR_TYPE_QWEN2A:
        case PROJECTOR_TYPE_ULTRAVOX:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4988
        case PROJECTOR_TYPE_LFM2:
4989
        case PROJECTOR_TYPE_VOXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
4990
4991
        case PROJECTOR_TYPE_JANUS_PRO:
        case PROJECTOR_TYPE_COGVLM:
4992
4993
4994
            {
                // do nothing
            } break;
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
        case PROJECTOR_TYPE_LLAMA4:
            {
                // set the 2D positions
                int n_patches_per_col = image_size_width / patch_size;
                std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
                // last pos is always kept 0, it's for CLS
                // dimension H
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i / n_patches_per_col) + 1;
                }
                set_input_i32("pos_h", pos_data);
                // dimension W
                for (int i = 0; i < num_patches; i++) {
                    pos_data[i] = (i % n_patches_per_col) + 1;
                }
                set_input_i32("pos_w", pos_data);
            } break;
5012
5013
        default:
            GGML_ABORT("Unknown projector type");
5014
5015
    }

5016
5017
5018
5019
5020
5021
5022
5023
5024
    // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
    ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
    ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
    if (reg) {
        auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
        if (ggml_backend_set_n_threads_fn) {
            ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
        }
    }
5025

5026
5027
5028
5029
5030
    auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
    if (status != GGML_STATUS_SUCCESS) {
        LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
        return false;
    }
5031

5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
    // print debug nodes
    if (ctx->debug_graph) {
        LOG_INF("\n\n---\n\n");
        LOG_INF("\n\nDebug graph:\n\n");
        for (ggml_tensor * t : ctx->debug_print_tensors) {
            std::vector<uint8_t> data(ggml_nbytes(t));
            ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
            print_tensor_shape(t);
            print_tensor_data(t, data.data(), 3);
        }
    }

5044
    // the last node is the embedding tensor
5045
5046
5047
5048
5049
5050
    ggml_tensor * embeddings = ggml_graph_node(gf, -1);

    // sanity check (only support batch size of 1 for now)
    const int n_tokens_out = embeddings->ne[1];
    const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
    if (n_tokens_out != expected_n_tokens_out) {
5051
        LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
5052
5053
        GGML_ABORT("Invalid number of output tokens");
    }
5054
5055
5056
5057
5058
5059
5060
5061

    // copy the embeddings to the location passed by the user
    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));

    return true;
}

int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
5062
    switch (ctx->model.proj_type) {
5063
        case PROJECTOR_TYPE_LDP:
5064
            return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
5065
        case PROJECTOR_TYPE_LDPV2:
5066
            return ctx->model.mm_model_peg_0_b->ne[0];
5067
5068
        case PROJECTOR_TYPE_MLP:
        case PROJECTOR_TYPE_PIXTRAL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5069
        case PROJECTOR_TYPE_LIGHTONOCR:
5070
            return ctx->model.mm_2_w->ne[1];
5071
        case PROJECTOR_TYPE_MLP_NORM:
5072
            return ctx->model.mm_3_b->ne[0];
5073
        case PROJECTOR_TYPE_MINICPMV:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5074
            return ctx->model.mm_model_proj->ne[0];
5075
        case PROJECTOR_TYPE_GLM_EDGE:
5076
            return ctx->model.mm_model_mlp_3_w->ne[1];
5077
5078
        case PROJECTOR_TYPE_QWEN2VL:
        case PROJECTOR_TYPE_QWEN25VL:
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5079
        case PROJECTOR_TYPE_JANUS_PRO:
5080
            return ctx->model.mm_1_b->ne[0];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5081
5082
5083
        case PROJECTOR_TYPE_QWEN3VL:
            // main path + deepstack paths
            return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
5084
        case PROJECTOR_TYPE_GEMMA3:
5085
            return ctx->model.mm_input_proj_w->ne[0];
5086
        case PROJECTOR_TYPE_IDEFICS3:
5087
5088
5089
5090
            return ctx->model.projection->ne[1];
        case PROJECTOR_TYPE_ULTRAVOX:
        case PROJECTOR_TYPE_VOXTRAL:
            return ctx->model.mm_2_w->ne[1];
5091
        case PROJECTOR_TYPE_INTERNVL:
5092
5093
5094
5095
5096
            return ctx->model.mm_3_w->ne[1];
        case PROJECTOR_TYPE_LLAMA4:
            return ctx->model.mm_model_proj->ne[1];
        case PROJECTOR_TYPE_QWEN2A:
            return ctx->model.mm_fc_w->ne[1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5097
5098
5099
        case PROJECTOR_TYPE_LFM2:
        case PROJECTOR_TYPE_KIMIVL:
            return ctx->model.mm_2_w->ne[1];
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5100
5101
        case PROJECTOR_TYPE_COGVLM:
            return ctx->model.mm_4h_to_h_w->ne[1];
5102
5103
        default:
            GGML_ABORT("Unknown projector type");
5104
    }
5105
5106
5107
}

int clip_is_minicpmv(const struct clip_ctx * ctx) {
5108
5109
    if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
        return ctx->model.hparams.minicpmv_version;
5110
5111
5112
    }
    return 0;
}
5113

5114
bool clip_is_glm(const struct clip_ctx * ctx) {
5115
    return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
5116
}
5117

5118
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
5119
    return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
Daniel Hiltgen's avatar
Daniel Hiltgen committed
5120
5121
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
5122
5123
}

5124
bool clip_is_llava(const struct clip_ctx * ctx) {
5125
    return ctx->model.hparams.has_llava_projector;
5126
5127
5128
}

bool clip_is_gemma3(const struct clip_ctx * ctx) {
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
    return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
}

bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_VISION;
}

bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
    return ctx->model.modality == CLIP_MODALITY_AUDIO;
}

bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
    return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
        || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
        || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
5144
5145
}

5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
    clip_image_f32 clip_img;
    clip_img.buf.resize(h * w * 3);
    for (int i = 0; i < h*w*3; i++)
    {
        clip_img.buf[i] = img[i];
    }
    clip_img.nx = w;
    clip_img.ny = h;
    clip_image_encode(ctx, n_threads, &clip_img, vec);
    return true;
}
5158
5159
5160
5161
5162
5163

//
// API used internally with mtmd
//

projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
    return ctx->proj_type();
}

void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
    clip_image_f32 * audio = new clip_image_f32;
    audio->nx = n_frames;
    audio->ny = n_mel;
    audio->buf.resize(n_frames * n_mel);
    std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));

    batch->entries.push_back(clip_image_f32_ptr(audio));
    batch->is_audio = true;
5176
}